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1. Introduction

In this paper we study the following functional integral equation

(1) x(t) = g(t) + f(t, x(t)

∫ β

α

u(t, s, x(s)) ds).
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In particular, in a special case it cover so-called quadratic integral equations.
Nonlinear quadratic functional integral equations are often applicable for
instance in the theory of radiative transfer, kinetic theory of gases, in the
theory of neutron transport, in the traffic theory and in numerous branches
of mathematical physics [30]. Especially, the quadratic integral equation of
Chandrasekhar type

x(t) = 1 + x(t)

∫ 1

0

t

t+ s
ϕ(s)x(s)ds

can be very often encountered in many applications (cf. [3, 11, 14, 17, 18,
25]).

The particular cases of our equation, were investigated for existence for
both continuous (cf. [1, 12, 15, 24] and integrable solutions ([6, 10, 11]). The
existence of different subclasses of solutions were proved (nonnegative func-
tions, monotone, having limit at infinity etc.). Let us note, that the problem
is investigated for finite or infinite intervals. We extend the existing results
dealing the monotonicity problem in a half-line for the most complicated
problem of the Uryson operators. For continuous solutions such a property
was recently investigated in [22, 24], for instance.

By applying Darbo fixed point theorem associated with the measure
of noncompactness, we obtain the sufficient conditions for the existence
of monotonic solutions of equation (1), which are integrable. The results
presented in this paper are motivated by the recent works of Banaś and
Chlebowicz [6], Banaś and Rzepka [12, 13] and extend these papers in many
ways.

2. Notation and auxiliary facts

Let R be the field of real numbers, R+ be the interval [0,∞) and L1(I) be
the space of Lebesgue integrable functions on a measurable subset I of R,
with the standard norm. In the paper we will denote a finite interval [a, b]
by I.

One of the most important operators studied in nonlinear functional
analysis is the so-called superposition operator [2]. Assume that a function
f(t, x) = f : I × R → R satisfies Carathéodory conditions i.e., it is measur-
able in t for any x ∈ R and continuous in x for almost all t ∈ I. Then, to
every function x(t) being measurable on I, we may assign the function

(Fx)(t) = f(t, x(t)), t ∈ I.
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The operator F is called the superposition operator generated by the func-
tion f . We have the following theorem (see [30]):

Theorem 2.1. Suppose, that f satisfies Carathéodory conditions. The su-

perposition operator F maps the space L1(I) into L1(I) if and only if

(2) |f(t, x)| ≤ a(t) + b|x|,

for all t ∈ I and x ∈ R, where a(t) ∈ L1(I) and b ≥ 0. Moreover, this

operator is continuous.

Let S = S(I) denote the set of measurable (in Lebesgue sense) functions
on I and let meas stand for the Lebesgue measure in R. Identifying the
functions equal almost everywhere the set S furnished with the metric

d(x, y) = inf
a>0

[a+meas{s : |x(s)− y(s)| ≥ a}]

becomes a complete space. Moreover, the convergence in measure on I is
equivalent to the convergence with respect to d (Proposition 2.14 in [29]).
For σ-finite subsets of R we say that the sequence xn is convergent in finite
measure to x if it is convergent in measure on each set T of finite measure.
The compactness in such spaces we will call a ”compactness in measure” (”in
finite measure”) and such sets have very nice properties when considered as
subsets of Lp-spaces of integrable functions.

Let X be a bounded subset of L1(I). Assume that there is a family
of subsets (Ωc)0≤c≤b−a of the interval I such that meas Ωc = c for every
c ∈ [0, b− a], and for every x ∈ X, x(t1) ≥ x(t2), (t1 ∈ Ωc, t2 6∈ Ωc). Such a
family is equimeasurable ([4]) and the set X is compact in measure in L1(I).
It is clear, that putting Ωc = [0, c)∪E or Ωc = [0, c)\E, where E is a set of a
null measure, this family contains nonincreasing functions (possibly except
for a set E). We will call the functions from this family ”a.e. nonincreasing”
functions. This is the case, when we choose an integrable and nonincreasing
function y and all functions equal a.e. to y satisfy the above condition. Thus
we can write, that elements from L1(I) belong to this class of functions.

Due to the compactness criterion in the space of measurable functions
(with the topology of the convergence in measure) (see Lemma 4.1 in [4]) we
have a desired theorem concerning the compactness in measure of a subset
X of L1(I) (cf. Corollary 4.1 in [4] or Section III.2 in [23]).



160 M. Cichoń and M.M.A. Metwali

Theorem 2.2. Let X be a bounded subset of L1(I) consisting of functions

which are a.e. nonincreasing (or a.e. nondecreasing) on the interval I.

Then X is compact in measure in L1(I).

If we consider the set of indices c ≥ 0 in the definition of the family of
a.e. nonincreasing functions, we are able to extend this result for the space
L1(R+). For simplicity, we will denote such a space by L1. Due to some
results of Väth we are able to extend the desired result from the interval
I = [a, b] into the σ-finite subsets of R and the topology of the convergence
in finite measure.

Theorem 2.3. Let X be a bounded subset of L1(R+) consisting of functions

which are a.e. nonincreasing (or a.e. nondecreasing) on the half-line R
+.

Then X is compact in finite measure in L1(R+).

Proof. If we consider the space L1(T ) for a σ-finite measure space T , then
there is some equivalent finite measure ν (ν(R+) < ∞) (Proposition 2.1. in
[29] or Corollary 2.20 in [29]). Then the convergence of sequences in S are
the same for the metric d and for

dν(x, y) = inf
a>0

[a+ ν{s : |x(s)− y(s)| ≥ a}]

(Proposition 2.2 in [28]). Take an arbitrary bounded sequence (xn) ⊂ X.
As a subset of a metric space X = (L1(R+), dν) the sequence is compact in
this metric space (Theorem 2.2). Then there exists a subsequence (xnk

) of
(xn) which is convergent in the space X to some x i.e.

dν(xnk
, x)

k→∞
−→ 0.

As claimed above these metrics have the same convergent sequences, then

d(xnk
, x)

k→∞
−→ 0.

This means that X is compact in finite measure in L1(R+).

We have also an important

Theorem 2.4 (Lemma 4.2 in [4]). Suppose the function t → f(t, x) is a.e.

nonincreasing on a finite interval I for each x ∈ R and the function x →
f(t, x) is a.e. nonincreasing on R for any t ∈ I. Then the superposition

operator F generated by f transforms functions being a.e. nonincreasing on

I into functions having the same property.
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We need to recall some basic fact about the Uryson operator:

(Ux)(t) =

∫ β

α

u(t, s, x(s)) ds t ∈ R+.

For the operator U we fix α, β ∈ I. Let u(t, s, x) : R+ × R
+ × R → R

satisfies Carathéodory conditions i.e. it is measurable in (t, s) for any x ∈ R

and continuous in x for almost all (t, s). If the operator

(U0x)(t) =

∫ β

α

V (t, s, x(s)) ds,

maps the space Lp(α, β) into Lq(α, β) (q < ∞), where

V (t, s, x) = max
‖v‖≤‖x‖

|u(t, s, v|,

then the operator U maps continuously Lp(α, β) into Lq(α, β) (q < ∞).
Unfortunately, for the most interesting case of operators with values in
L∞(α, β) such a characterization is not valid. Let us note, that in the main
result, we will restrict ourselves to the set of a.e. monotone functions. Thus
we have to assume an additional monotonicity property of u to preserve this
property too (cf. [12]).

Consider the operator

K(x)(t) = x(t) · U(x)(t).

For such a type of operators we need to verify that it takes the values in a
(expected) space L1(R+). For continuous solutions on a finite interval this
is described, for instance, in [21], but for integrable solutions the problem
is not sufficiently noticed and examined (sometimes even skipped). It is
necessary, that the continuity of such an operator should be verified.

As a consequence of the Riesz representation theorem we obtain the
following

Lemma 2.1. Assume, that the operator U maps continuously the space

L1(R+) into L∞(R+). Then the operator K(x)(t) = x(t) · U(x)(t) is a

continuous operator from L1(R+) into itself.

The last question is to describe some conditions under which the Uryson
operator has the above property (cf. [30], section 10.1.7). Unfortunately,
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the problem is complicated and exceed the scope and the aim of this paper.
Let us formulate the main result by using most useful assumptions from the
point of view of applicability of the results. Namely, even the simplest case:
|u(t, s, x)| ≤ m(s) for sufficiently good functions m is really applicable (cf.
Section 4).

The following theorem, which is a particular case of a much more general
result, will be very useful in the proof of the main result:

Lemma 2.2 [30]. Let u : R+ × R
+ × R → R satisfies Carathéodory condi-

tions i.e., it is measurable in (t, s) for any x ∈ R and continuous in x for

almost all (t, s). Assume, that

|u(t, s, x)| ≤ k(t, s),

where the nonnegative function k is measurable in (t, s) and such that the

linear integral operator with the kernel k(t, s) maps L1 into L∞. Then the

operator U maps L1 into L∞. If for each non-negative z(t) ∈ L1 this oper-

ator satisfies

lim
measD→0

sup
|x|≤z

∥

∥

∥

∫

D

u(t, s, x(s))ds
∥

∥

∥

L∞

= 0

and for arbitrary h > 0

lim
δ→0

∥

∥

∥

∫

D

max
|xi|≤h,|x1−x2|≤δ

|u(t, s, x1)− u(t, s, x2)| ds
∥

∥

∥

L∞

= 0,

then U is a continuous operator.

We mention also that some particular conditions guaranteeing the continuity
of the operator U may be found in [27, 30]. For the continuous case the
situation is simpler (cf. [15, 24], for instance).

Next, we give some definitions and results which will be needed further
on. Assume that (E, ‖ · ‖) is an arbitrary Banach space with zero element
θ. Denote by B(x, r) the closed ball centered at x and with radius r. The
symbol Br stands for the ball B(θ, r).

If X is a subset of E, then X̄ and convX denote the closure and convex
closure of X, respectively. We denote the standard algebraic operations on
sets by the symbols λX and X+Y . Moreover, we denote by ME the family
of all nonempty and bounded subsets of E and NE its subfamily consisting
of all relatively compact subsets.

Now we present the concept of a regular measure of noncompactness:
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Definition 2.1 [9]. A mapping µ : ME → [0,∞) is said to be a measure of
noncompactness in E if it satisfies the following conditions:

(i) µ(X) = 0 ⇔ X ∈ NE .

(ii) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

(iii) µ(X̄) = µ(ConvX) = µ(X).

(iv) µ(λX) = |λ|µ(X), for λ ∈ R.

(v) µ(X + Y ) ≤ µ(X) + µ(Y ).

(vi) µ(X
⋃

Y ) = max{µ(X), µ(Y )}.

(vii) If Xn is a sequence of nonempty, bounded, closed subsets of E such
that Xn+1 ⊂ Xn, n = 1, 2, 3, . . . , and limn→∞ µ(Xn) = 0, then the set
X∞ =

⋂∞
n=1Xn is nonempty.

An example of such a mapping is the following:

Definition 2.2 [9]. Let X be a nonempty and bounded subset of E. The
Hausdorff measure of noncompactness χ(X) is defined as

χ(X) = inf{r> 0 : there exists a finite subset Y of E such that x⊂ Y+Br}.

Another regular measure was defined in the space L1 in [7] (cf. [8]). Re-
stricted to the family of compact in finite measure subsets of this space,
it forms a regular measure of noncompactness. For any ǫ > 0, let c be a
measure of equiintegrability of the set X:

c(X) = lim
ǫ→0

{

sup
x∈X

{

sup
[

∫

D

|x(t)|dt,D ⊂ R
+, measD ≤ ǫ

]}}

,

and

d(X) = lim
T→∞

{

sup
[

∫ ∞

T

|x(t)| dt : x ∈ X
]}

.

Put
γ(X) = c(X) + d(X).

Then we have the following theorem, which clarify the connections between
measures χ(x) and γ(x) ([7]).

Theorem 2.5. Let X be a nonempty, bounded and compact in measure

subset of L1. Then

χ(x) ≤ γ(x) ≤ 2χ(x).
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An importance of such a kind of functions can be clarified by using the
contraction property with respect to this measure instead of compactness in
the Schauder fixed point theorem. Namely, we have a theorem due to Darbo
([9, 19]):

Theorem 2.6. Let Q be a nonempty, bounded, closed and convex subset of

E and let H : Q → Q be a continuous transformation which is a contraction

with respect to the measure of noncompactness µ, i.e., there exists k ∈ [0, 1)
such that

µ(HX) ≤ kµ(X),

for any nonempty subset X of E. Then H has at least one fixed point in the

set E.

3. Main result

Denote by H the operator associated with the right hand side of equation
(1) which takes the form

x = Hx,

where

(Hx)(t) = g(t) + f(t, x(t)

∫ β

α

u(t, s, x(s)) ds), t ≥ 0.

The operator H will be written as the product Hx(t) = g(t) + FKx(t) of
the superposition operator

(Fx)(t) = f(t, x(t))

and the Uryson integral operator of the form

(Ux)(t) =

∫ β

α

u(t, s, x(s))ds.

Thus equation (1) becomes

(3) x = g + FKx.

We shall treat equation (1) under the following assumptions which are listed
below.

(i) g ∈ L1(R+) and is a.e. nonincreasing on R
+.
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(ii) f : R+ × R → R satisfies Carathéodory conditions and there are a
positive function a ∈ L1 and a constant b ≥ 0 such that

|f(t, x)| ≤ a(t) + b|x|,

for all t ∈ R
+ and x ∈ R. Moreover, f(t, x) ≥ 0 for x ≥ 0 and f

is assumed to be nonincreasing with respect to both variable t and x

separately.

(iii) u : R
+ × R

+ × R → R satisfies Carathéodory conditions i.e., it is
measurable in (t, s) for any x ∈ R and continuous in x for almost all
(t, s). The function u is nonincreasing with respect to each variable,
separately. Moreover, for arbitrary fixed s ∈ R

+ and x ∈ R the
function t → u(t, s, x(s)) is integrable.

(iv) There exists a measurable function k such that:

|u(t, s, x)| ≤ k(t, s)

for all t, s ≥ 0 and x ∈ R. A measurable nonnegative function
k : R+ → R

+ is supposed to be nonincreasing with respect to each vari-
able separately and such that the linear integral operator K0 with ker-
nel k(t, s) maps L1 into L∞. Moreover, for each non-negative z ∈ L1

let

lim
measD→0

sup
|x|≤z

‖

∫

D

u(t, s, x(s))ds‖L∞ = 0

and assume that for arbitrary h > 0 (i = 1, 2)

lim
δ→0

‖

∫

D

max
|xi|≤h,|x1−x2|≤δ

|u(t, s, x1)− u(t, s, x2)| ds ‖L∞ = 0.

(v) b · ‖K0‖∞ < 1.

Then we can prove the following theorem.

Theorem 3.1. Let the assumptions (i)–(v) be satisfied. Then equation (1)
has at least one solution a.e. nonincreasing on R

+ which is locally integrable.

Proof. First of all observe that by Assumption (ii) and Theorem 2.1 F is a
continuous operator from L1 into itself. Moreover, by (iv) U is a continuous
operator from L1 into L∞ (see Lemma 2.2) and then by Lemma 2.1 the
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operator K maps L1 into itself. Finally, for a given x ∈ L1 the function Hx

belongs to L1 (cf. Section 2) and is continuous.

Using (3) together with assumptions (iii) and (iv), we get

‖Hx‖ ≤ ‖g‖+ ‖FKx(t)‖

≤ ‖g‖+

∫ ∞

0
[a(t) + b|x(t)|

∫ β

α

|u(t, s, x(s))| ds]dt

≤ ‖g‖+ ‖a‖+ b

∫ ∞

0
|x(t)|[

∫ β

α

k(t, s) ds ]dt

≤ ‖g‖+ ‖a‖+ b

∫ ∞

0
[|x(t)| · ‖K0(t)‖∞]dt

= ‖g‖+ ‖a‖+ b · ‖K0‖∞ · ‖x‖.

From the above estimate it follows, that there is a constant r > 0 such that
H maps the ball Br into itself. Indeed, by (v) we get

‖Hx‖ ≤ ‖g‖+ ‖a‖+ b · ‖K0‖∞ · ‖x‖

≤ ‖g‖+ ‖a‖+ b · ‖K0‖∞ · r

and then we obtain that H(Br) ⊂ Br, where

r =
‖g‖ + ‖a‖

1− b‖K0‖∞
.

Further, let Qr stand for the subset of Br consisting of all functions which
are a.e. nonincreasing on R

+. Similarly as claimed in [5] this set is nonempty

(x(t) = e
t

r ∈ Br ∩ Qr, for instance), bounded by r, convex (direct calcu-
lation from the definition) and closed in L1(R+). To prove the last prop-
erty, let (yn) be a sequence of elements in Qr convergent in L1 to y. Then
the sequence is convergent in finite measure and as a consequence of Vitali
convergence theorem and of the characterization of convergence in measure
(Riesz theorem) we obtain the existence of a subsequence (ynk

) of (yn) which
converges to y almost uniformly on R

+. Moreover, y is still nonincreasing
a.e. on R

+. Then y ∈ Qr and so the set Qr is closed. Now, in view of
Theorem 2.3 the set Qr is compact in finite measure. To see this it suffices
to put Ωc = [0, c] \ P for any c ≥ 0, where P denotes a suitable set with
measP = 0.
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Now, we show, that H preserves the monotonicity of functions. Take x ∈ Qr,
then x(t) is a.e. nonincreasing on R

+ and consequently Kx(t) is of the same
type in virtue of assumption (iii) and Theorem 2.4. Further, FKx(t) is a.e.
nonincreasing on R

+ thanks to assumption (ii). Moreover, from assumption
(i) it follows that Hx = g(t) + FKx(t) is also a.e. nonincreasing on R

+.
This fact, together with the assertion H : Br → Br, gives that H is also a
self-mapping of the set Qr. From the above considerations it follows that H
maps continuously Qr into Qr.

From now we will assume that X is a nonempty subset of Qr and the
constant ǫ > 0 is arbitrary, but fixed. Then, for an arbitrary x ∈ X and for
a set D ⊂ R

+, measD ≤ ǫ, we obtain

∫

D

|(Hx)(t)|dt ≤

∫

D

[

|g(t)| + a(t) + b · |x(t)| ·

∫ β

α

|u(t, s, x(s))| ds
]

dt

= ‖g‖L1(D) + ‖a‖L1(D) + b · ‖x‖L1(D) ·
∥

∥

∥

∫ β

α

k(t, s) ds
∥

∥

∥

L∞

≤ ‖g‖L1(D) + ‖a‖L1(D) + b · ‖K0‖∞ · ‖x‖L1(D).

Hence, taking into account the equality

lim
ǫ→0

{

sup
[

∫

D

|g(t)| dt+

∫

D

a(t) dt : D ⊂ R
+, measD ≤ ǫ

]}

= 0

and the definition of c(X) (cf. Section 2), we get

(4) c(HX) ≤ b · ‖K0‖∞ · c(X).

Furthermore, fixing T > 0, we get the following estimate

∫ ∞

T

|(Hx)(t)|dt ≤

∫ ∞

T

[

|g(t)| + a(t) + b|x(t)|

∫ β

α

|u(t, s, x(s))| ds
]

dt

≤

∫ ∞

T

[

|g(t)| + a(t) + b|x(t)|

∫ β

α

k(t, s) ds
]

dt

≤

∫ ∞

T

|g(t)| dt+

∫ ∞

T

a(t) dt+ b‖K0‖∞

∫ ∞

T

|x(t)| dt.
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As T → ∞, the above inequality yields

(5) d(HX) ≤ b · ‖K0‖∞ · d(X),

where d(X) has been defined in Section 2.

Hence, combining (4) and (5) we get

γ(HX) ≤ b · ‖K0‖∞ · γ(X),

where γ denotes our measure of noncompactness defined in Section 2.

The inequality obtained above together with the properties of the oper-
ator H and the set Qr established before allow us to use Theorem 2.5 and
as a consequence, apply Theorem 2.6. This completes the proof.

Remark 3.1. If we assume that the functions g and t → u(t, s, x) are a.e.
nondecreasing and negative then applying the same argumentation, we can
show that there exists a solution of our equation being a.e. negative and
nondecreasing. Moreover, let us remark, that the monotonicity conditions in
the main theorem seems to be restrictive, but they are necessary as claimed
in [12, Example 2].

4. Examples

In order to illustrate the results proved in Theorem 3.1, let us consider the
following example:

Let the following equation

(6) x(t) = e−t + x(t)

∫ β

α

t

t2 + s2 + (x(s))2
ds

be given.

Putting g(t) = e−t, f(t, x) = x and u(t, s, x) = t
t2+s2+x2 it is easy to

see, that u is nonicreasing with respect to each variable separately and the
integrability condition is also satisfied (i.e. assumptions (i), (ii) and (iii) are
satisfied).

Let us take k(t, s) = 1
t2+s2

. Since
∫ β

α
k(t, s) ds = arctan β

t
− arctan α

t
,

then
∣

∣

∣

∫ β

α

k(t, s) ds
∣

∣

∣
≤ |β − α|.
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Thus Assumption (v) holds for K0 (for sufficiently small parameter b depen-
dent on α and β).

Moreover, given arbitrary h > 0 and |x2 − x1| ≤ δ we have

|u(t, s, x1)− u(t, s, x2)|

≤
t(x22 − x21)

(t2 + s2 + x21)(t
2 + s2 + x22)

≤
2htδ

(t2 + s2 + x21)(t
2 + s2 + x22)

and Assumption (iv) is satisfied.
Taking into account all the above observations and Theorem 3.1 we

conclude that the equation (6) has at least one solution x = x(t) defined,
integrable and a.e. nonincreasing on R

+.
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[27] M. Väth, A general theorem on continuity and compactness of the Urysohn

operator, J. Integral Equations Appl. 8 (1996), 379–389.



Monotonic solutions for quadratic integral equations 171
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