ArticleOriginal scientific text

Title

Necessary conditions for linear noncooperative N-player delta differential games on time scales

Authors 1, 1

Affiliations

  1. Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Abstract

We present necessary conditions for linear noncooperative N-player delta dynamic games on an arbitrary time scale. Necessary conditions for an open-loop Nash-equilibrium and for a memoryless perfect state Nash-equilibrium are proved.

Keywords

delta differential games, dynamic games on time scales

Bibliography

  1. H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati equations. In control and systems theory, Systems & Control: Foundations & Applications, Birkhäuser Verlag, Basel, 2003.
  2. Z. Bartosiewicz and E. Pawluszewicz, Realizations of linear control systems on times scales, Control and Cybernetics 35 (4) (2006), 769-786.
  3. M. Bohner and A. Peterson, Dynamic equations on time scales, An introduction with applications, Birkhäuser Boston, Inc., Boston, MA, 2001.
  4. M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-0-8176-8230-9
  5. R.A.C. Ferreira and D.F.M. Torres, Remarks on the calculus of variations on time scales, Int. J. Ecol. Econ. Stat. 9 F07 (2007), 65-73.
  6. R.A.C. Ferreira and D.F.M. Torres, Higher-order calculus of variations on time scales, Mathematical control theory and finance, (Springer, Berlin, 2008), 149-159.
  7. R.A.C. Ferreira and D.F.M. Torres, Necessary optimality conditions for the calculus of variations on time scales, arXiv:0704.0656.
  8. S. Hilger, Ein Ma{ßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universitäat Würzburg, 1988.
  9. S. Hilger, Differential and difference calculus- unified! Proceedings of the Second World Congress on Nonlinear Analysts, Part 5 (Athens, 1996). Nonlinear Analysis 30 (5) (1997), 2683-2694. doi: 10.1016/S0362-546X(96)00204-0
  10. G. Jank, Introduction to non-cooperative dynamical game theory, University of Aveiro, 2007 (personal notes).
  11. G. Leitmann, Cooperative and non-cooperative many players differential games, Course held at the Department of Automation and Information, July 1973. International Centre for Mechanical Sciences, Courses and Lectures No. 190, Wien - New York: Springer-Verlag, 1974.
  12. L.S. Pontryagin, V.G. Boltyanskij, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes, Translated from Russian by K.N. Trirogoff; edited by L.W. Neustadt, Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962.
Pages:
23-37
Main language of publication
English
Received
2009-12-21
Published
2011
Exact and natural sciences