ArticleOriginal scientific text

Title

Optimal design of cylindrical shells

Authors 1, 1

Affiliations

  1. Greifswald University, Germany

Abstract

The present paper studies an optimization problem of dynamically loaded cylindrical tubes. This is a problem of linear elasticity theory. As we search for the optimal thickness of the tube which minimizes the displacement under forces, this is a problem of shape optimization. The mathematical model is given by a differential equation (ODE and PDE, respectively); the mechanical problem is described as an optimal control problem. We consider both the stationary (time independent) and the transient (time dependent) case. P. Nestler derives the model-equations from the Mindlin and Reissner hypotheses. Then, necessary optimality conditions for the optimal control problem are given. Numerical solutions are obtained by FEM, numerical examples are presented.

Keywords

linear elasticity, shell theory, cylindrical tube, optimal control, shape optimization

Bibliography

  1. V. Azhmyakov, J. Lellep and W. Schmidt, On the optimal design of elastic beams, Struct. Multidisc. Optim. 27 (2004), 80-88. doi: 10.1007/s00158-003-0352-1
  2. F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen (Vieweg Verlag, Wiesbaden, 2005).
  3. D. Braess, Finite Elemente (Springer Verlag, Berlin, Heidelberg, New York, 1997).
  4. D. Chapelle and K.J. Bathe, The Finite Element Analysis of Shells - Fundamentals (Springer Verlag, Berlin, Heidelberg, 2003). doi: 10.1007/978-3-662-05229-7
  5. J. Wloka, Partielle Differentialgleichungen (Teubner Verlag, Stuttgart, 1982). doi: 10.1007/978-3-322-96662-9
  6. St.P. Timoshenko, Schwingungsprobleme der Technik (J.-Springer-Verlag, 1932).
  7. R. Hill, The mathematical theory of plasticity (Oxford Clarendon Press, 1950).
  8. G. Olenev, On optimal location of the additional support for an impulsively loaded rigid-plastic cylindrical shell, Trans. Tartu Univ. 772 (1987), 110-120.
  9. Ü. Lepik and T. Lepikult, Automated calculation and optimal design of rigid-plastic beams under dynamic loading, Int. J. Impact Eng. 6 (1987), 87-99. doi: 10.1016/0734-743X(87)90012-1
  10. J. Lellep, Optimization of inelastic cylindrical shells, Eng. Optimization 29 (1997), 359-375. doi: 10.1080/03052159708941002
  11. T. Lepikult, W.H. Schmidt and H. Werner, Optimal design of rigid-plastic beams subjected to dynamical loading, Springer Verlag, Structural Optimization 18 (1999), 116-125. doi: 10.1007/BF01195986
  12. J. Lellep, Optimal design of plastic reinforced cylindrical shells, Control-Theory and Advanced Technology 5 (2) (1989), 119-135.
  13. P. Nestler, Calculation of deformation of a cylindrical shell, Preprint Mathematik 4/2008.
  14. J. Sprekels and D. Tiba, Optimization problems for thin elastic structures, in 'Optimal Control of Coupled System of PDE', ISNM 158 Birkhaeuser (2009), 255-273.
Pages:
253-267
Main language of publication
English
Received
2009-12-07
Published
2010
Exact and natural sciences