ArticleOriginal scientific text

Title

Error estimates for the finite element discretization of semi-infinite elliptic optimal control problems

Authors 1, 2, 1, 1

Affiliations

  1. Technische Universität Berlin, Institut für Mathematik, Germany
  2. Escuela Politécnica Nacional, Departamento de Matemática, Ecuador

Abstract

In this paper we derive a priori error estimates for linear-quadratic elliptic optimal control problems with finite dimensional control space and state constraints in the whole domain, which can be written as semi-infinite optimization problems. Numerical experiments are conducted to ilustrate our theory.

Keywords

elliptic optimal control problem, state constraints, error estimates, finite element discretization

Bibliography

  1. N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl. 23 (2002), 201-229. doi: 10.1023/A:1020576801966
  2. F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems (Springer, New York, 2000).
  3. E. Casas, Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems, Advances in Computational Mathematics 26 (2007), 137-153. doi: 10.1007/s10444-004-4142-0
  4. E. Casas and M. Mateos, Error estimates for the numerical approximation of Neumann control problems, Comput. Optim. Appl. 39 (2008), 265-295. doi: 10.1007/s10589-007-9056-6
  5. P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).
  6. K. Deckelnick and M. Hinze, Convergence of a finite element approximation to a state constrained elliptic control problem, SIAM J. Numer. Anal. 45 (2007), 1937-1953.
  7. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, 3rd edition, 1998).
  8. P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Boston, 1985).
  9. G. Gramlich, R. Hettich and E.W. Sachs, Local convergence of SQP methods in semi-infinite programming, SIAM J. Optim. 5 (1995), 641-658.
  10. M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case, J. Comput. Optim. Appl. 30 (2005), 45-63. doi: 10.1137/060652361
  11. M. Huth and R. Tichatschke, A hybrid method for semi-infinite programming problems, Operations research, Proc. 14th Symp. Ulm/FRG 1989, Methods Oper. Res. 62 (1990), 79-90.
  12. P. Merino, F. Tröltzsch and B. Vexler, Error Estimates for the Finite Element Approximation of a Semilinear Elliptic Control Problem with State Constraints and Finite Dimensional Control Space, ESAIM:M2AN 44 (1) (2010), 167-188.
  13. C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints, Control Cybern. 37 (2008), 51-85.
  14. C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM J. Control and Optimization 43 (2004), 970-985.
  15. C. Meyer, U. Prüfert and F. Tröltzsch, On two numerical methods for state-constrained elliptic control problems, Optimization Methods and Software 22 (6) (2007), 871-899.
  16. R. Rannacher and B. Vexler, A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements, SIAM Control Optim. 44 (2005), 1844-1863.
  17. R. Reemtsen and J.-J. Rückmann (Eds), Semi-Infinite Programming (Kluwer Academic Publishers, Boston, 1998). doi: 10.1007/978-1-4757-2868-2
  18. A. R{ösch, Error estimates for linear-quadratic control problems with control constraints, Optimization Methods and Software 21 (1) (2006), 121-134. doi: 10.1080/10556780500094945
  19. G. Still, Discretization in semi-infinite programming: the rate of convergence, Mathematical Programming. A Publication of the Mathematical Programming Society 91 (1) (A) (2001), 53-69.
  20. G. Still, Generalized semi-infinite programming: Numerical aspects, Optimization 49 (3) (2001), 223-242.
  21. F. Guerra Vázquez, J.-J. Rückmann, O. Stein and G. Still, Generalized semi-infinite programming: a tutorial, J. Comput. Appl. Math. 217 (2008), 394-419. doi: 10.1016/j.cam.2007.02.012
Pages:
221-236
Main language of publication
English
Received
2010-01-26
Published
2010
Exact and natural sciences