ArticleOriginal scientific text

Title

On the existence of five nontrivial solutions for resonant problems with p-Laplacian

Authors 1, 2

Affiliations

  1. Jagiellonian University, Institute of Computer Science, Poland
  2. National Technical University, Department of Mathematics, Greece

Abstract

In this paper we study a nonlinear Dirichlet elliptic differential equation driven by the p-Laplacian and with a nonsmooth potential. The hypotheses on the nonsmooth potential allow resonance with respect to the principal eigenvalue λ₁ > 0 of (-Δ,W1,p(Z)). We prove the existence of five nontrivial smooth solutions, two positive, two negative and the fifth nodal.

Keywords

p-Laplacian, Clarke subdifferential, linking sets, upper-lower solutions, second eigenvalue, nodal and constant sign solutions, second deformation theorem

Bibliography

  1. A. Ambrosetti, J. García Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219-242. doi: 10.1006/jfan.1996.0045
  2. S. Carl and D. Motreanu, Constant sign and sign-changing solutions for nonlinear eigenvalue problems, doi: 10.1016/j.na.2007.02.013, 2007.
  3. S. Carl and K. Perera, Sign-changing and multiple solutions for the p-Laplacian, Abstr. Appl. Anal. 7 (2002), 613-625.
  4. K.-C. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, volume 6 of Progress in Nonlinear Differential Equations and Their Applications (Birkhäuser Verlag, Boston, MA, 1993).
  5. F.H. Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1983).
  6. M. Cuesta, D. de Figueiredo and J.-P. Gossez, The beginning of the Fučik spectrum for the p-Laplacian, J. Differ. Equ. 159 (1999), 212-238.
  7. N. Dancer and Y. Du, On sign-changing solutions of certain semilinear elliptic problems, Appl. Anal. 56 (1995), 193-206.
  8. N. Dunford and J.T. Schwartz, Linear Operators I, General Theory, volume 7 of Pure and Applied Mathematics (Wiley, New York, 1958).
  9. J. García Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), 385-404.
  10. L. Gasiński and N.S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems (Chapman and Hall/CRC Press, Boca Raton, FL, 2005).
  11. L. Gasiński and N.S. Papageorgiou, Nonlinear Analysis (Chapman and Hall/ CRC Press, Boca Raton, FL, 2006).
  12. Q.-S. Jiu and J.-B. Su, Existence and multiplicity results for Dirichlet problems with p-Laplacian, J. Math. Anal. Appl. 281 (2003), 587-601. doi: 10.1016/S0022-247X(03)00165-3
  13. O.A. Ladyzhenskaya and N. Uraltseva, Linear and Quasilinear Elliptic Equations, volume 46 of Mathematics in Science and Engineering (Academic Press, New York, 1968).
  14. G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219.
  15. J.-Q. Liu and S.-B. Liu, The existence of multiple solutions to quasilinear elliptic equations, Bull. London Math. Soc. 37 (2005), 592-600.
  16. S.-B. Liu, Multiple solutions for coercive p-Laplacian equations, J. Math. Anal. Appl. 316 (2006), 229-236. doi: 10.1016/j.jmaa.2005.04.034
  17. M. Marcus and V.J. Mizel, Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal. 33 (1979), 217-229.
  18. E.H. Papageorgiou and N.S. Papageorgiou, A multiplicity theorem for problems with the p-Laplacian, J. Funct. Anal. 244 (2007), 63-77.
  19. J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.
  20. Z. Zhang, J.-Q. Chen and S.-J. Li, Construction of pseudo-gradient vector field and sign-changing multiple solutions involving p-Laplacian, J. Differ. Equ. 201 (2004), 287-303.
Pages:
169-189
Main language of publication
English
Received
2009-11-24
Published
2010
Exact and natural sciences