ArticleOriginal scientific text
Title
The existence of Carathéodory solutions of hyperbolic functional differential equations
Authors 1
Affiliations
- Institute of Mathematics, University of Gdańsk, Wit Stwosz St. 57, 80-952 Gdańsk, Poland
Abstract
We consider the following Darboux problem for the functional differential equation a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b]\(0,a]×(0,b], where the function $u_{(x,y)}:[-a₀,0]×[-b₀,0] → ℝ^{k}$ is defined by $u_{(x,y)}(s,t) = u(s+x,t+y)$ for (s,t) ∈ [-a₀,0]×[-b₀,0]. We prove a theorem on existence of the Carathéodory solutions of the above problem.
Keywords
existence theorem, functional differential equation, hyperbolic equation, Darboux problem, solution in the sense of Carathéodory
Bibliography
- A. Alexiewicz and W. Orlicz, Some remarks on the existence and uniqueness of solutions of the hyperbolic equation ∂²z/∂x∂y = f(x,y,z,∂z/∂x,∂z/∂y), Stud. Math. 15 (1956), 201-215.
- E. Berkson and T.A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc. 30 (1984), 305-321.
- T. Człapiński, Hyperbolic functional differential equations, Gdańsk, 1999.
- M. Dawidowski, I. Kubiaczyk and B. Rzepecki, An existence theorem for the hyperbolic equation
in Banach space, Demonstr. Math. 20 (1987), 489-493. - M. Dawidowski and I. Kubiaczyk, On bounded solutions of hyperbolic differential inclusion in Banach space, Demonstr. Math. 25 (1992), 153-159.
- K. Deimling, A Carathéodory theory for systems of integral equations, Ann. Mat. Pura Appl. 86 (1970), 217-260.
- B. Palczewski and W. Pawelski, Some remarks on the uniqueness of solutions of the Darboux Problem with conditions of the Krasnoleski-Krein type, Ann. Pol. Math. 14 (1964), 97-100.
- A. Pelczar, Some functional differential equations, Diss. Math. 100 (1973), 3-74.
- R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publisher, cop. 2002.
- B. Rzepecki, On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach space, Rend. Semin. Mat.Univ. Padova 76 (1986), 201-206.
- J. Simon, Compact sets in the Space
, Annali di Matematica Pura ed Applicate 146 (1986), 65-96. - J. Straburzyński, The existence of solutions of some functional-differential equations of hyperbolic type, Demonstr. Math. 12 (1979), 105-121.
- J. Straburzyński, Existence of solutions of the Goursa problem for some functional-differential equations, Demonstr. Math. 15 (1982), 883-897.
- W. Walter, Ordinary functional differential equations and inequalities in the sense of Carathéodory, Appl. Anal. 70 (1998), 85-95.
- W. Walter, Differential and Integral Inequalities, Springer, 1970. doi:10.1007/978-3-642-86405-6