ArticleOriginal scientific text

Title

The existence of Carathéodory solutions of hyperbolic functional differential equations

Authors 1

Affiliations

  1. Institute of Mathematics, University of Gdańsk, Wit Stwosz St. 57, 80-952 Gdańsk, Poland

Abstract

We consider the following Darboux problem for the functional differential equation ²uxy(x,y)=f(x,y,u(x,y),ux(x,y),uy(x,y)) a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b]\(0,a]×(0,b], where the function $u_{(x,y)}:[-a₀,0]×[-b₀,0] → ℝ^{k}$ is defined by $u_{(x,y)}(s,t) = u(s+x,t+y)$ for (s,t) ∈ [-a₀,0]×[-b₀,0]. We prove a theorem on existence of the Carathéodory solutions of the above problem.

Keywords

existence theorem, functional differential equation, hyperbolic equation, Darboux problem, solution in the sense of Carathéodory

Bibliography

  1. A. Alexiewicz and W. Orlicz, Some remarks on the existence and uniqueness of solutions of the hyperbolic equation ∂²z/∂x∂y = f(x,y,z,∂z/∂x,∂z/∂y), Stud. Math. 15 (1956), 201-215.
  2. E. Berkson and T.A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc. 30 (1984), 305-321.
  3. T. Człapiński, Hyperbolic functional differential equations, Gdańsk, 1999.
  4. M. Dawidowski, I. Kubiaczyk and B. Rzepecki, An existence theorem for the hyperbolic equation zxy=f(x,y,z) in Banach space, Demonstr. Math. 20 (1987), 489-493.
  5. M. Dawidowski and I. Kubiaczyk, On bounded solutions of hyperbolic differential inclusion in Banach space, Demonstr. Math. 25 (1992), 153-159.
  6. K. Deimling, A Carathéodory theory for systems of integral equations, Ann. Mat. Pura Appl. 86 (1970), 217-260.
  7. B. Palczewski and W. Pawelski, Some remarks on the uniqueness of solutions of the Darboux Problem with conditions of the Krasnoleski-Krein type, Ann. Pol. Math. 14 (1964), 97-100.
  8. A. Pelczar, Some functional differential equations, Diss. Math. 100 (1973), 3-74.
  9. R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publisher, cop. 2002.
  10. B. Rzepecki, On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach space, Rend. Semin. Mat.Univ. Padova 76 (1986), 201-206.
  11. J. Simon, Compact sets in the Space Lp(0,T;B), Annali di Matematica Pura ed Applicate 146 (1986), 65-96.
  12. J. Straburzyński, The existence of solutions of some functional-differential equations of hyperbolic type, Demonstr. Math. 12 (1979), 105-121.
  13. J. Straburzyński, Existence of solutions of the Goursa problem for some functional-differential equations, Demonstr. Math. 15 (1982), 883-897.
  14. W. Walter, Ordinary functional differential equations and inequalities in the sense of Carathéodory, Appl. Anal. 70 (1998), 85-95.
  15. W. Walter, Differential and Integral Inequalities, Springer, 1970. doi:10.1007/978-3-642-86405-6
Pages:
121-140
Main language of publication
English
Received
2009-06-20
Published
2010
Exact and natural sciences