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Abstract

In this paper we give examples of value functions in Bolza prob-
lem that are not bilateral or viscosity solutions and an example of
a smooth value function that is even not a classic solution (in par-
ticular, it can be neither the viscosity nor the bilateral solution) of
Hamilton-Jacobi-Bellman equation with upper semicontinuous Hamil-
tonian. Good properties of value functions motivate us to introduce
approximate solutions of equations with such type Hamiltonians. We
show that the value function is the unique approximate solution.
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1. INTRODUCTION

Having a Hamiltonian H : [0,7] x R! x R — R, we can define a Lagrangian
L:0,T] xR x RE = RU {400} by

L(t,z, f) :=sup (f,p)— H(t,z,p),
peR!

then we have L(t,z,f) = H*(t,z,f), where "*" denotes the Legendre-
Fenchel transform with respect to the last variable. Analyzing the problems
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in this paper we concentrate on upper semicontinuous Hamiltonians of linear
growth and convex with respect to the last variable. In view of the inverse
procedure we can obtain the well known equality H(t,z,p) = L*(t,x,p).

Given a point (tg,zo) € [0,7] x R!, a terminal cost g : R' — R U {+o0}
and Lagrangian, we consider the generalized problem of Bolza:

T
P(to, o) : minimize g(z(T)) +/ L(t,z(t),z(t))dt subject to x(tg) = zg

to

with the minimization carried out over all absolutely continuous arcs x :
[to, T] — R

Optimal control problems can be reformulated in Bolza problem: see
Clarke [7] or Bardi and Capuzzo-Dolcetta [2]. In section 2 we discuss condi-
tions and facts that we need in further sections of this paper.

Section 3 studies regularity of the value function V : [0,T] x Rl —
R U {400}, defined as the optimal value in P(tg, o) parameterized by the
initial condition. Using techniques from Cesari [6] we show that increasingly
convergent sequence of Lagrangians L, to the Lagrangian L (i.e., L, < L1
and L, — L — pointwise) implies increasing convergence of value functions
V., to value function V, which particularly is an epigraphical convergence.
Furthermore, if z,(+) is optimal trajectory of the value function V,,(¢, x), then
accumulation points of a sequence {x, () }nen are optimal trajectories of the
value function V' (¢,z). From the duality, the previous result can be stated in
the following way: decreasing convergence of a sequence of Hamiltonians H,,
to the Hamiltonian H, so that it is also hipographical convergence, implies
increasing convergence of value functions V,, to the value function V. Similar
problems concerning convergence of value functions were investigated by
Buttazzo and Dal Maso [5], Briani [4] and Frankowska [9].

In Section 4 we show that upper semicontinuous Hamiltonian H of linear
growth and convex with respect to the last variable can be decreasingly ap-
proximated by Hamiltonians H,, (i.e., H,+1 < H, and H,, — H — pointwise),
which inherit properties of H, besides, they are locally Lipschitz uniformly
with respect to p (i.e., |[H(t,xz,p)— H(t',2',p)| < C([t —t'|+ |z —2'|)(1+|p|)
for all p € RY, t,¢' € [0,T], z,2' € Br := {x € RY; |z| < R}). Next, we
formulate the above fact in Lagrangian notation, which gives us a version
of Antosiewicz-Cellina theorem (Theorem 1.13.1, [1]). Problems of the con-
vergence of value functions and the approximation of Hamiltonian were also
studied by Goebel (see [10]), for the case of concave-convex Hamiltonian.
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In Section 5 we give examples of upper semicontinuous Hamiltonians, whose
value functions are not bilateral or viscosity solutions and even an example
of a smooth value function that is not the classic solution (in particular,
it can be neither the viscosity nor the bilateral solution). Moreover, we
show (not necessarily with an assumption about convexity of Lagrangian)
that the value function is locally Lipschitz. Results obtained in sections
3 and 4 allow to conclude that the value function of upper semicontinu-
ous Hamiltonian can be monotonically approximated by locally Lipschitz
value functions, which are, in the class of locally Lipschitz functions satis-
fying boundary condition, unique bilateral (viscosity) solutions of adequate
Hamilton-Jacobi-Bellman equations. Assuming that Hamiltonian is contin-
uous, then Barron and Jensen Proposition 3.2 in [3] and our studies imply
that the value function is a bilateral solution.

In Section 6 we propose definitions of approximate solutions of Hamilton-
Jacobi-Bellman equation, with upper semicontinuous Hamiltonian. Of course,
the offered definition includes examples from Section 5. We compare approx-
imate solutions to bilateral, viscosity and classical solutions. Finally, we for-
mulate a theorem about existence and uniqueness of approximate solutions.

2. PRELIMINARIES

Let us introduce conditions needed in this paper which, in fact, are typical
of optimal control problems.

1. Conditions responding to Hamiltonian H : [0,T] x Rl x R! = R

(H1) H is upper semicontinuous,
(H2) H(t,z,p) is convex with respect to p for every t € [0,7T], = € R!,
(H3) H(t,x,p) < C(1+ |z|)(|p| + 1) for every t € [0,T], x,p € R! and
constant C > 0,
(H4) H(t,z,p) > —C(1+ |z|)(|p| + 1) for every t € [0,T], z,p € R! and
constant C' > 0.
2. Conditions responding to Lagrangian L : [0,7] x Rl x Rl — R U {400}

(L1) L is lower semicontinuous,

(L2) L(t,z, f) is convex, proper with respect to f for every ¢ € [0,T],
z eRE
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(L3) L(t,x, f) > —C(1+]z|) forevery t € [0,T], z, f € R! and constant
C >0,

(L4) there exists a constant C' > 0 such that for all f,z € R! and
t € [0,T7] the following implication proceeds:

[fI>CA+z[) = L(t,z, f) = +oo,

(L5) there exists a constant C' > 0 such that for all t € [0,7], x € R!
there exists f € R! such that max{L(t,z, f),|f|} < C(1 + |z]).

3. Locally Lipschitz type condition of the Hamiltonian:

(HL) VR > 0 3K > 0 Vp € R' Vt,t' € [0,T] Vx,2' € Bp the following
inequality holds |H(¢t,z,p) — H(t',2',p)| < K(|t — | + |z — 2|)
(Ipl +1).

It is not hard to prove the following equivalences: the first one says that
(H1)-(H3) are satisfied if and only if (L1)-(L4) are satisfied. The second
one says that (H1)-(H4) are satisfied if and only if (L1)-(L5) are satisfied.
Moreover, if H satisfies (H1)-(H3) and (HL), then Q(¢,z) := Epi(L(t,x,-))
(where L is dual to H) is locally Lipschitz with respect to Hausdorff distance
(see Proposition 2.2, [12]).

Assume that g : R' — RU{+oc0} is a lower semicontinuous function and
Lagrangian L : [0,7] x Rl x Rl — R U {+o0} satisfies (L1), (L3) and (L4),
then the value function

T
V(t = inf T L(t,z(t),z(t))dt
1020 = o o 0@+ [ L))

is defined from [0,7] x R! in R U {+o0c}. Moreover modifying proofs in
the paper of Plaskacz-Quincampoix [12] we deduce that the value function
is lower semicontinuous and has Lipschitz minimizer if Lagrangian satisfies
conditions (L1)—(L4).

Subdifferential D_w(xzg) of the lower semicontinuous function w : R? —
R U {+o0} at g € Dom(w) is given by

D_w(xg) = {p e R%; liminf w(w) = wlzo) = {p,x = 20) > 0} .

T—0 |z — 20|

Subdifferential D¥w(xg) of the upper semicontinuous function w : R? —
R U {—oc} at xg € Dom(w) is given by DT w(zg) = —D_(—w(xp)).
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Moreover, properties (L1)—(L4) imply that the set-valued map @ has the
following property (cf. Section 10.5 in [6])

(1) Q(t,{E) = ﬂm@(t,x,a),

e>0

where
Qt,z,¢) := U QU z).

[t—t'|<e, [x—a!|<e

3. MONOTONIC CONVERGENCE OF THE VALUE FUNCTION

We use the technique from Cesari [6] to prove the result of monotonic con-
vergence of the value function.

Definition 3.1 (Kuratowski epi/hypo-convergence). A sequence of func-
tions f,, : Rl — [—o0, +00], n = 1,2,..., epi-converges to f (e-lim f, = f for
short) if for every point = € R!

(i) liminf f,(x,) > f(x) for every sequence z,, — x,

(ii) limsup fp,(z,) < f(x) for some sequence x,, — x.

We say that a sequence of functions f,, is hypo-convergent to f (h-lim f,, = f
for short) if e-lim(—f,) = (—f).

Let fn, f : Rl — (—o0,+00] be upper (lower) semicontinuous and f,, \, f
(fn /" f), then h-lim f,, = f (e-lim f,, = f). Moreover, if f,, f: Rl — R
are continuous and f, \, f, then the sequence of functions f,, is uniformly
convergent on a compact set to f. Since f,, f : RE — R are convex, we obtain
the following equivalence f, N\, f if and only if f " f*. The sufficient
condition in the last equivalence can be proved by using the epigraphical
convergence of the sequence {f;},en and super linear growth of the function
fr. For details, consult Rockafellar and Wets [15]. These properties give us
the following corollary.

Corollary 3.2. Suppose that Hy,, H are dual to Ly, L respectively, then the
following properties are equivalent:

(i) Hamiltonians Hy, H satisfy (H1)-(H3) and H, \, H (this implies h-
lim H, = H),
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(ii) Lagrangians Ly, L satisfy (L1)-(L4) and L, , L (this implies e-
lim Ly, = L).

Moreover, if H,, H are continuous and H, \, H, then sequence of functions
H,, is uniformly convergent on a compact set to H.

Theorem 3.3 (Convergence). Suppose that Lagrangians Ly, L : [0, T]xR!x
R! — RU {400} satisfy conditions (11)~(L4) and g,, g : R" — RU{+o0} are
lower semicontinuous functions, moreover, L, /' L and g, / g. If Vo,V
are value functions associated with Ly, g, and L, g respectively, then V,, /' V
(this implies e-limV,, = V).

Proof. Fix (tg,z9). Monotonicity of L,,g, implies that V,,(to,zo) <
Vot (to, xzo) < V(to,xo). Let us define an auxiliary function W (tg,z¢) =
lim,, o Vy,(to, z0), then we have W < V. To complete the proof it is
enough to show that W = V. If W(ty,z9) = 400, then V(tg,z9) = 400,
so W(to,z9) = V(to,zo). If W(tg,zp) is finite, then also V,(tg,zo) is fi-
nite. Let every element of the sequence of absolutely continuous functions
T, : [to, T] — R such that z,(tg) = z¢, be a minimizer of corresponding
Vi (to, zo). From the definition of W (tg, xg) we obtain

T
2) gn(n(T)) + / Lt 2 (8), dn(£))dt < W (to, o).

to

Next, from monotonicity of L, the following inequality is satisfied

T T
/ Li(t,zp,(t), 2, (t))dt g/ Ly (t, zp(t), 2, (t))dt < +o0.
to to

Using assumption (L4) to Ly, we have |z, (t)| < C(1+ |z, (t)|) for almost all
t € [to, T]. By the Gronwall inequality, we have |z, (t)| < (|zo| + TC)eTC =:
Cy forn € N, t € [tg,T] and |2,(t)] < C(1+ Cy) for n € N, aa. t €
[to, T]. By the Dunford-Pettis criterion (Theorem 0.3.4 in [1]), there exists
a subsequence (again denoted by) x, such that x, converges uniformely
to absolutely continuous function z and &, converges weakly in L' to 4.
Besides, from (L3) applied to Ly, we have —Co(1+ C1) < Ly (¢, 2,(t), 2n(t))
for n € N, a.a. t € [tg,T]. Let 6 > 0. Since e-lim g,, = g and (2) is true, we
get g(z(T)) is finite and g(z(T")) — 6 < gn(zn(T)) for almost all n € N. We
can also assume that the following inequality is satisfied:

/ U Lt n(8), ()t < Wt 20) — 9(a(T)) + 5.

to
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According to Mazur Lemma, there exist non-negative reals )\f N such that
SN MG =1 and SN N yigys —n @ in L for all & € N. Then there
exists a sequence N,, such that for every kK € N

Np,
(3) yh(t) = Ny dpri(t) —n @(t)  for aa.t € [to,T].
=1

Let
Nn,

Mn(t) = Ln(t, 20 (t), #n(t)), 15 =D M x Mkt

and
n*(t) = liminf nf(t),  n(t) = limkinf n*(t).

The following integral can be bounded

T

T Nn
(4) / nh(t)dt =3 ey / Mesa(D)dt < W(to, 20) — g((T)) + 6.

t() i

Using the inequality (4) and Fatou Lemma, we obtain

T T
/ n(t)dt < limkinf lim inf/ n®(t)dt < W (to, o) — g(x(T)) + 6.
to

n to

Let s € N be fixed. We will show that for almost all ¢ € [tg, T] the following
inequality is satisfied

(5) n(t) = Ls(t, x(t), (t))-
Let us define Qs(t, z) := Epi(Ls(t, z,-)). Fix t € [to, T such that n,(t), T,(t),
yk(t), nk(t), n¥(t), n(t) are well defined and finite. For & > 0 there exists

ko > s such that for every k > ko and all i € N we have |xp4,(t) —z(t)] < .
For n > s

(@n(t), (1)) € Qs(t, zn (1)),
for k> kg,i €N
(@h4i(t), me4i (1)) € Qs(t, 2(2),€),
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for k> kg,n €N

(yn (1), 15 (1)) € conv Qs(t, (1), &),
(&(1), 1" (1)) € conv Qs(t, (1), &),
(@(t),n(t)) € conv Qs(t, x(t),¢),
€ is arbitrary so

(&(t),n(t)) € () Tonv Qs(t, a(t),e).

e>0

This and (1) imply n(t) > Ls(t,z(t),(t)). Observe that we obtain (5) for
almost all ¢ € [tp, T]. Because s € N is also arbitrary, for almost all ¢ € [to, T
and for all n € N we obtain inequality

n(t) = Lu(t, (1), #(t)).
Then in limit we obtain inequality
n(t) > L(t,x(t),z(t)) for a.a.t € [to,T].

Summarizing, we obtain the following inequality

T

o@(T) + [ Lt al0),6(0)dh < Wto,z0) + 5
to

Consequently, we have inequality V' (tg, z9) < W(tg, o) + 0. From arbitrari-

ness of § we get V(tg,xo9) < Wi(to,x0), so V(to,xo) = W (to,xo)- [

Remark 3.4. Suppose that the assumptions of Theorem 3.3 are satisfied.
Then it is not hard to notice from the proof of this theorem that if x,,(-) is
optimal trajectory of the value function V,, (¢, x), then accumulation points of
a sequence {2, (-) }nen are optimal trajectories of the value function V (¢, x).

From Theorem 3.3 and Corollary 3.2 we obtain:

Corollary 3.5. Suppose that Hamiltonians H,, H : [0,T] x R x Rl — R
satisfy conditions (H1)-(H3) and g,,g : R' — R U {+oc} are lower semi-
continuous functions, moreover, H, \, H and g, /" g. If V,,,V are value
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functions associated with Ly, g, and L,g respectively (where L,, L are dual

to Hy, H), then V,, /' V (this implies e-limV,, = V).

4. APPROXIMATION OF THE USC HAMILTONIAN

Using the technique similar to the one used in the proof of Antosiewicz-
Cellina theorem (see Theorem 1.13.1, [1]), we are going to establish the
approximation result.

Lemma 4.1. Let a function H : R™ x Rl — R satisfy the following condi-
tions:

(A) H(z,p) is convexr with respect to p for every x € R™,

(B) |H(z,p)| < C(1+ |z|)(|p| + 1) for every x € R™, p € R! and constant
C >0,

then we obtain the following inequality |H (x,p)—H (z,p’)| < 3C(1+|x|)|p—p/|
for every x € R™ and p,p’ € RL.

Proof. Using a similar argument as in the proof of (Theorem 10.4 [14]), we
show the conclusion of this lemma. Indeed, let R > 2, p,p’ € Brja, v € R™

and p # p'. Put u= (p' —p)/|p' —pl, ¢ =p+ Ru and ¢ = |[p’ — p|/R. So
we obtain p’ = (1 — ¢)p + e¢. We know that H satisfies (A) and (B), so
H('Iap/) < (1 - €)H($,p) + €H($,q),

H(z,p') — H(x,p) < —eH(x,p) +cH(x,q)

eC(1+ |z[)(L+ |p[ + 1+ |q])
eC(1+|z)(1+ |p| + 1+ |p| + R)
eC(1+|z])(2+4 2R)

= C(1+ |2)[p - pl(2/R +2)

< 3C(1L+[z[)[p' - pl.

IN

)
)

IN

IN

Changing p and p/, we obtain H(x,p) — H(x,p') < 3C(1 + |z|)|p — p'|- So
|H(x,p) — H(z,p')| <3C(1+ |z])|p —p'| for every p,p" € Brjp and z € R™.
From arbitrariness of R > 2 we obtain the conclusion of Lemma. |

Proposition 4.2. Let a function H : R™ x R! — R satisfy conditions (A),
(B) and moreover:
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(D) V2o € R™ 3R > 0 3K > 0 Vp € R! Va,2’ € B(xg, R) the following
inequality holds |H(z,p) — H(z',p)| < K|z — 2'|(|p| + 1).

Then H 1s locally Lipschitz.

Proof. Let us fix 5 € R™, pg € R\, Then there exists K > 0 and R > 0
such that |H(z,p) — H(2',p)| < K|z — 2'|(|p| + 1) for all z,2’ € B(xg, R)
and p € R!. From Lemma 4.1, we obtain |H (2/,p) — H(z',p’)| < 3C(1+|2'|)
Ip — /| for all p,p’ € R and 2’ € R™. Then we have |H(z,p) — H(2',p')| <
K(R+ |po| +1)|z — 2’| +3C(1 + R+ |zo|)|p — p'| for all z, 2" € B(xp, R) and
p,p € B(po, R). [ |

Remark 4.3. Hamiltonian H : R x R — R given by the following formula

0 p<pna#0
H(z,p)=q P—17 P> 2 #0
0 ; =0,

is locally Lipschitz and satisfies (A), (B), but it does not satisfy (D). La-
grangian L : R x R — [0, +oc], dual to Hamiltonian H is given as

too ; fE0,1], 2 £0
Lf s feln) a0
0 ; f=0,2=0
+o0 ;3 f#0, z=0.

L((L‘,f) -

Note that the structure of the Hamiltonian above is so different from the
structure of the Hamiltonians satisfying (D), that the multifunction Q(¢,x) :=
Epi(L(t,z,-)) is not even upper semicontinuous with respect to Hausdorff
distance.

Theorem 4.4 (Approximation). Let function H : R™ x Rl — R be upper
semicontinuous and satisfy conditions (A), (B). Then there exists a family
of functions {H, : R™ x R — R},.cn, satisfying the following conditions:

1. H(z,p) < Hpy1(z,p) < Hy(z,p) for alln €N, z € R™, p € R,

2. Hy(z,p) — H(z,p) for all z € R™, p € R,

3.¥n € NVzg € R™ Ir > 0, 3K > 0 Vp € RY, Va,2’ € B(xg,r) the
following inequality proceeds |Hy(x,p) — Hp(2',p)| < K|z —2'|(|p| + 1),
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4. |Hp(z,p)| <2C(1 + |z))(|p| + 1) for all ;n € N, z € R™, p € R,
5. Hy,(x,p) is conver with respect to p for every n € N, x € R™,
6. H,, is locally Lipschitz for all n € N.

Proof. There exists a family of locally Lipschitz partition of unity {Y :
R™ — [0, +00) }xen,, such that

(i) suppy} C B(a%, 5=,
(i) >oxen, ¥a(z) =1
(iii) Let us fix n € N and € R™. Then there exist: an open neigh-

bourhood U of a point x and A}, \5,...,AY € A, such that if A €
Ap \{AT, AL, ... AL} and y € U, then ¢} (y) = 0.

For A € A, we define a function HY : R! — R by formula

HX(p)= sup H(z,p).
2€B (2%, 5m)

Next let us define H,, : R™ x Rl — R by

)= > ¢i(2)HL(p)

AEA,

Now we show that a family of functions { H,, },en satisfies all the conclusions
of our theorem. It is easy to see that for x € R™ there exist AT, Ag,..., A} €
A, satisfying the equality:

(6) Z’l/})\n H)\n forp c Rl

Moreover, > 2%, 9% (2) = 1 and ¢3n(z) > 0 for j € {1,2,...,s,}.
J J
The proof of 5 is a consequence of convexity H{(-) and (6).

To prove 4, let us fix x € R™. Let Hy(z,p) = 3 7% ¥ (2)Hn (p)
J J
be as in (6). Since x € (- B((L‘A?, 3), for z € Uiz B(wgfg_t, 2) we have
|z — x| <1 (]z] <1+ |z|). Therefore for j € {1,2,...,s,} we obtain
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|Hx(p)] < sup  |H(z,p)|
! zEB(:):An,ln)

< sup  C(1+|z)(pl +1)
zEB(zAn,%)

< O+ [z))(pl+1)
< 201+ [z (Ipl +1).

That is why we have the inequality |H,(x,p)| < 2C(1 + |z|)(|p| + 1).

To proof 1: We shall determine x € R™. Let Hy(z,p) = > 3" ¥ ()
J
HY.(p) be as in (6). Since z € ()32 B(x)\n,?’n), so Hy(xz,p) > H(x,p).
J
Let Hiin(z,p) = Y ol im (o) HE (p) be as in (6). We show the fol-

>\1+n )\1+n

lowing inclusion B(xi'ﬁ"n, 312+n) C B(x)\?,%n) for i € {1,2,...,814n}, j €
{1,2,...,s,}. Essentially, we know that =z € ﬂj’;l B(wﬁy,g%) and x €

s1 1 1 1 2 :
N2 B(a:)\ffn, 3w )- Let us take z € B(a:)\ffn, 37w ). Then we obtain
7 7

1+n 14+n
z—x&‘? < 2= Tyl —}—‘x)\#n—x‘—i—‘x—x&‘?
11 2
30 T30 T3 T 3

Using the inclusion we have inequality
H}(p) = H,{7.(p)
J

)\1+n

forie {1,2,...,514n} 7 €4{1,2,...,8,}. Hence,

S1+4n S1+4n

for j € {1,2,...,s,}. This implies inequality

Z¢An ) Hin (p >Z%n JHi1n(%,p) = Hitn(2,p).
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To proof 2: Let us fix zp € R™ and py € R!. Since H is upper semi-
continuous, Veso Js=o such that |z — zo| < § = H(x,po) < H(xg,p0) +
e. Let ng € N be such that 3,%1 < 6 for n > ng. Let Hy,(xo,p0)

Py 1/1?? (wo)ny (po) be as in (6). Considering that xo € [~ B(x)\n =
we obtain (J3”, B(xﬁy,:%n) C B(zg,9) for n > ng. Hence, HAn( 0)

H(zo,po) + ¢ for j € {1,2,...,s,}, n > ng. Consequently, H. (xo,po)

H(xo,po) + € for n > ng. Using proof 1, we have H,(xq,po) > H(xo,po) S
Hy(20,p0) — H (20, p0)-

)
<
<

o

To proof 3: Let us fix zg € R™ and n € N. There exists an open
neighbourhood U of a point xg and AT, \y,..., A} € A, such that

Hn(y,p) = Y3 (Y)Hu (p) + 3%p () Hyp (p) + - + 30 () H32 (P)

for y € U, p € R\, Furthermore, we can assume that wﬁ?,wgg, oo, P, are

. - . 9
Lipschitz in U with constant 7. Let R > 0 be so large that (J}_, B(wﬁy, 57)
C Brandlet k=n-s-2C(1+ R). Then for j € {1,2,...,s} we have

|HY(p)] < sup  |H(z,p)
! T€B(xYy,2)
J

< sup  20(1+ [z|)(|pl +1) <201+ R)(|p[ +1).
xEB(xAn,%)

Finally, for 4,7/ € U and p € R} we obtain:

Ha(y,p) = Haly',p)] < D 195 () = 3 ()| HSn ()]
j=1

< D nly = yIlH: ()]

j=1
< 52001+ R)ly —y/|(Jp| + 1)
= kly—¢/|(Ipl + 1)

To proof 6: It is a consequence from Proposition 4.2. [ |

Formulating Theorem 4.4 through the multifunction corresponding to La-
grangian, we get a version of Antosiewicz-Cellina theorem. Moreover, the
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multifunction in this version of the theorem does not need to be upper semi-
continuous in the sense of Hausdorff distance. For instance we can take L
from Remark 4.3.

Theorem 4.5. If L : R™ x R! — (—o0, +-00] satisfies type conditions (L.1)—
(L5), then there exists a sequence of functions Ly, : R™ x Rt — (—o0, +00]
such that

1. Q(.%') = Epi(L((L‘, )), Qn(x) = Epi(Ln((E, )),

2. Qn(z) are conver and closed,

3. Q) C Quir € Qul@),  Qz) = ﬁlQnua

4. the map Q,, is locally Lipschitz with respect to Hausdorff distance,
5. the Kuratowski limit of sequence Qn(x) equals Q(x) for each x € R™.

Proof. Let H be a Hamiltonian associated with Lagrangian L satisfying
type conditions (H1)-(H4). Then H fulfills the assumptions of Theorem
4.4, so there exists a sequence of Hamiltonians H,, satisfying the conclusion
of Theorem 4.4. The sequence of Lagrangians L, associated with the se-
quence of Hamiltonians H,, fulfills type conditions (L1)—(L4) and it implies
1. Moreover, from Corollary 3.2 we get L, / L and e-lim L,, = L, which
implies 2 and 4. However, 3 is a consequence of the property presented in
preliminaries. [ |

Corollary 4.6. Let H : [0,T] x R x R! — R satisfy (H1)—(H4). Then there
exists a family of functions {H, : [0,T] x R! x Rl — R},.en such that:
1. H, \, H,
H,, satisfies conditions (HL),
[Hy(t,z,p)| <201+ T)(1 + |z|)([pl + 1),
H,(t,x,p) is convex with respect to p for all n €N, t €[0,T], z € R,

Al

H,, is locally Lipschitz for every n € N.

Proof. Let H(t,x,p)=H(0,x,p) for t < 0 and H(t,z,p) = H(T,x,p) for
t> T Since [H(t,z,p)| < C(1+ [2l)(Ipl +1) < C(1+ |(t,2)[)(p| + 1), the
assumptions of Theorem 4.4 are satisfied. There exists a family of functions
H, : R x R x Rl — R, the one which fulfills all the conditions of the
conclusion of the above theorem on the set [0,7] x R! x RY. We show 3 and
2, the rest is obvious.
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The proof of 3: |Hy(t, 2, p)| < 20(1+/(t,2) ) (Ipl+1) < 20(1+T+|z]) (|pl+1)
< 2C(1+T)(1+ [z])(Jpl + 1).

To proof 2: Let us fix n € N and R > 0. Then from Theorem 4.4
and compactness of the set [0,7] x Bg, we obtain finite family of open
sets {U;}7_, covering a set [0,T] x Bg and numbers {K;}7_; such that for
i € {1...7} the following inequality holds:

|Hu(t,2,p) — Hu(t, 2, p)| < Ki(Jt = t| + |z — 2"[)(Ip] + 1)

for (t,x), (¢',2') € U;, p € R\ Next we choose a Lebesgue number A > 0 of
. . . 2C(1+R)(1+T)

covering {U;}]_;. Let us put K := max;eqy, - {K;,2=————}. Then,

for (t,z), (t,2') € [0,T] x Bg, we obtain: If |(¢t,z) — (¢,2')| < A, then

Jiequ,...,ry for which (t,z), (¢',2") € U;, hence

[Ha(t,2,p) = Ho(t',2',p)| < K(|t = 1| + & — 2')(]p| + 1) forp € R'.

If |(t,z) — (¢/,2")| > A, then from proof 3

|Hn(t,,p) — Hu(t', 2, p)| < [Hn(t, z,p)| + [Ha(t', 2", p)|

,20(1+T)(1+ R)
A

< K(t—t'|+ |z —2'|)(|p| +1) forpeR.

Alpl +1)

5. VALUE FUNCTION AND USC HAMILTONIAN

In this section we provide examples of value functions in Bolza problem that
are not bilateral, viscosity and classical solutions and show how to approxi-
mate these functions in the case of upper semicontinuous Hamiltonian.

5.1. Locally Lipschitz continuity of the value function

We show that if terminal cost is locally Lipschitz, then the value function
is also locally Lipschitz. We also emphasize in the sequel that we do not
assume that Lagrangian L(t,z,-) is convex.
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Theorem 5.1. Suppose that Lagrangian L : [0,T] x R! x RE — RU {+oc0} is
proper with respect to the last variable and satisfies (L1), (L3) and (L4). Fiz
R > 0. Let Q(t,x) = Epi(L(t,z,)) be Lipschitz with respect to Hausdorff
distance on [0, T] x B(14 gpireyerre with a constant k > 0. If (z,u) : [1,0] —
R! x R is absolutely continuous function such that [1,0] C [0,T], |=(7)| < R,
(@(t),u(t)) € Q(t,z(t)), then for |z.| < R, u; € R there exists an absolutely
continuous function (Z,7) : [1,0] — R! x R such that T(1) = x, and u(t) =
ur. Moreover,

L (@(t),u(t) € Q(t
2. [&(t) — ()] + [u
3. [2(t) — ()| + [u

L Z(1)),
i(t) —u(t)| < (|lzr — x(7)|)4ker,
) —u(t)] < (|7 — 2(7)| + |ur — u(7)])2e*7.

Theorem 5.1 is a version of Filippov theorem, which can be obtained by little
change in the proof of this theorem: we take into consideration the fact that
the multifunction comes from Lagrangian with super linear growth.

Lemma 5.2. Suppose that Lagrangian L : [0,T] x R x Rl — R U {+oc}
is proper with respect to the last variable and satisfies (L1), (L3) and (1L4).
Moreover, let Q(t,z) = Epi(L(t,x,-)) be locally Lipschitz with respect to
Hausdorff distance. For ug € R, tg € [0,T) and (fo,n0) € Q(to, o) there
exists a C'-class function (z,u) : [to,T] — R x R such that (z,u)(tg) =

(z0,u0), (&,4)(t5) = (fo,m0) and (&(t),u(t)) € Q(t,z(t)).

Lemma 5.2 is a version of Proposition 3.14 from the paper of Plaskacz and
Quincampoix [12]|, which can be obtained by taking the multifunction that
comes from Lagrangian with super linear growth.

Remark 5.3. From Lemma 5.2 we obtain the following if Lagrangian satis-
fies the assumptions of Lemma 5.2 and the terminal cost is finite, then the
value function is also finite.

Theorem 5.4. Suppose that Lagrangian L : [0,T] x R! x Rf — RU {+oc0} is
proper with respect to the last variable and satisfies (L1), (L3) and (L4). Let
g : Rl — R be locally Lipschitz and Q(t,x) = Epi(L(t,z,-)) be locally Lips-
chitz with respect to Hausdorff distance, then the value function V associated
with L, g is locally Lipschitz.
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Proof. From Lemma 5.2 we obtain a Cl-class function (z,v) : [0,T] —
R! x R such that 0(t) > L(t, 2(t), 2(t)). Let us take non-negative number
r such that |z(¢)] < r and [0(t)] < r when ¢t € [0,7]. Put R := (1 +
r 4 TC)eTC. Let ki be the Lipschitz constant for the multifunction Q(-,-)
on [0,T] x B4 pyrcyeere and kz the Lipschitz constant for g(-) on Bg.
To prove Theorem 5.4, it is enough to show that V(¢1,z1) — V(t2,x2) <
k(|ty — ta| + |z1 — 22]) for t1,t2 € [0,T] and 21,79 € B,., where k = (kg +
D(C(1 + R) + 1)2eMT + max{C(1 + R), (8k1"T + 1)R}. We show this
inequality in two steps.

Step 1. The following inequality is true_V(tl,xl) —V(t1,z2) < |x1 — 29
(k2 + 1)2eMT for t; € [0,T] and x1,29 € B,. Indeed, fix t; € [0,T), x1, 29 €

B, and ¢ > 0. Let = : [t;,T] — R! be absolutely continuous such that
x(t1) = x2 and

T
e+ V(ti,z2) > g(x(T)) —|—/ L(t,z(t),z(t))dt.

t1

Let us take an absolutely continuous function (x,u) : [t;,T] — R! x R such
that (z,u)(t1) = (22,0) and u(t) = L(t,x(t),&(t)). From Theorem 5.1 there
exists an absolutely continuous function (Z,%) : [t;,T] — R! x R such that
(Z,7)(t1) = (x1,0) and u(t) > L(t,Z(t),Z(t)), moreover

[T(T) — 2(T)| + [@(T) — w(T)| < |21 — w2267

Assumption (L4) implies |Z(t)| < C(14|Z(t)|). Using Gronwall inequality, we
obtain |Z(t)| < (|z1] + TC)e’® < R. Analogously, we show that |z(t)| < R.
Then g(Z(T)) — g(x(T)) < ko|T(T) — x(T)|. Let us prove the inequality

V(tl, xl) — V(tl, $2)
T

T .
< g(@(T)) +/ L(t,z(t),z(t))dt — g(x(T)) —/ L(t,z(t),z(t))dt + ¢

t1 t1

T ) T
= g(x(T)) — g(=(T)) +/ L(t,z(t),z(t))dt —/ L(t,xz(t),z(t))dt + ¢

< ko|Z(T) —2(T)| +a(T) —u(T)+¢

< k2’fL’1 - 1’2‘261?17‘ + ‘.%'1 — (L’Q’QelﬁT +e= ‘xl — -%'2’(/{2 + 1)2ek1T + e
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If tl = T, then V(tl,xl) — V(t1,$2) = g(xl) — g(xg) S k‘2|$1 — $2|. From
arbitrariness of € > 0 the proof of Step 1 is complete.

Step 2. The following inequality is true V(t1,z2) — V(t2,z2) < |t1 — to]
((ka +1)2eMTC(1 4+ R) + max{C(1 + R), (8k1e"T +1)R}) for t1,ty € [0, T]
and z9 € B,.

Case 1. Let us fix ty < t; < T, 23 € B, and € > 0. Let z : [to,T] — R/
be absolutely continuous such that z(t2) = x5 and

T
e+ Vte,x2) > g(z(T)) +/ L(t,x(t),x(t))dt.

to
Condition (L4) implies |z(t)] < C(1 + |z(t)|). Using Gronwall inequality,
we obtain |z(t)| < (Jza| + TC)eTC < R and |2(t)] < C(1 + R). So z(-)
is Lipschitz with the constant C(1 + R). Condition (L3) implies —C(1 +
R) < —C(1+|z(t)]) < L(t,z(t),(t)). Let us take an absolutely continuous
function (z,u) : [t1,T] — R! x R such that (z,u)(t;) = (z(t1),0) and u(t) =
L(t,xz(t),2(t)). From Theorem 5.1 there exists an absolutely continuous
function (Z,) : [t1,T] — R! x R such that (Z,u)(t1) = (x2,0) and wu(t) >
L(t,%(t),Z(t)). Moreover,

[T(T) — 2(T)| + [a(T) — u(T)| < |z(tr) — 2|2eM7
= |z(t1) — z(t2)|2eMT < [t1 — 12269 TC(1 + R).

Then |2(T)| < Rand |Z(T)| < C(|za| +TC)e’® < Rso g(F(T))—g(z(T)) <
k2|Z(T) — x(T)|. Let us prove the inequality

V(tl, .%'2) — V(tz, .%'2)

T ) T
< g(z(T)) +/ L(t,z(t),z(t))dt — g(x(T)) — / L(t,z(t),z(t))dt + &
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T ty
—/ L(t,x(t),a'c(t))dt—/ L(t, 2(t), (t))dt + =

t1 to

IN

ko|Z(T) — z(T)| +u(T) — u(T) + |t1 — t2|C(1 + R) + ¢

IN

kQ‘tl— tg’?leTC(l + R) + ’tl— tg’?@leC(l + R) + ’tl— tz’C(l + R) +e

Ity — ta|((k2 + 1)2eMTC(1 + R) + C(1 + R)) +&.

Similarily, we show the inequality when ¢; = T'. From arbitrariness of ¢ > 0,
the proof of Case 1 is complete.

Case 2. Let us fix t; < to < T, 9 € B, and € > 0. For a defined
C'-class function (z,v) : [0,%5] — R! x R for which (z,v)(t2) = (2(t2),v(t2))
and v(t) > L(t,z(t),2(t)) we match from Theorem 5.1 (back in time) an
absolutely continuous function (Z,9) : [0,2] — R! x R such that (Z,7)(t2) =
(w2,v(t2)) and ©(t) > L(t,Z(t),Z(t)). Moreover, [0(t) — v(t)] < |2(t2) —
xo|4k M T Then [v(t)] < |2(t2) — xo|dk1eMT 4 |0(t)| < 8REk1eMT 4+ R. So
L(t,Z(t),z(t)) < (8kieMT 4+ 1)R. Condition (L4) implies [Z(t)] < C(1 +
|Z(t)]). Using Gronwall inequality (back in time), we obtain |Z(¢)| < (|za| +
TC)eTC < R and [Z(t)] < C(1+4 R). So Z(-) is Lipschitz with the constant
C(14R). Let x : [t2, T] — R! be absolutely continuous such that x(ty) = a9
and

T
e+ Vte,x2) > g(x(T)) +/ L(t,x(t),x(t))dt.

to

Let us take an absolutely continuous function (y,u) : [t1,T] — R! x R such
that (y,u)(t1) = (Z(t1),0) and u(t) = L(t,y(t),y(t)), where y(t) equals x(t)
on [ta,T] and Z(t) on [t1,t2]. From Theorem 5.1 there exists an absolutely
continuous function (7,) : [t1,T] — R! x R such that (7,a)(t;) = (x2,0)

and w(t) > L(t,7(t),7(t)). Moreover,
[9(T) — y(T)| + [a(T) — w(T)| < [2(t1) — z2[2¢" T
= [2(t1) — Z(t2)[2eMT < |t — t2]2eMTC(1 + R).

Then [§(T)| < (22| + TC)e™ < R and |y(T)| = [x(T)| < (Jo2| + TC)e™
< Rsog(y(T)) —g(y(T)) < ko|y(T) — y(T)|. Let us prove the inequality
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T . T

< g@(T) + / Lt 5(0), 5(0))dt — g(x(T)) / L(t, (1), (8))dt + ¢
' T _ T

= @(T)) - gy(T)) + / L(tg(t),5(8)dt — / Lty (), ()t +

T
= J@T)) - gw(T)) + / Lt 5(t),3(0))dt
T t2
- / L(t,y (), §(8))dt + / Lty (), ()t +
< Baf(T) — y(T)| +W(T) — w(T) + / CL(t (), 5(0)dE + €

< kz’tl — tg‘Q@leC(l + R) + ’tl - t2\2ek1TC’(1 + R)
+ [ta — t1|(8k1eM T + R + £

= [t1 — to|((ka + 1)2¢"TC(1 + R) + (8k1eMT + 1)R) +¢.

Similarly, we show the inequality when 5 = T'. From arbitrariness of ¢ > 0,
the proof of Case 2 is complete. [ |

From the properties enlisted in the Preliminaries and Theorem 5.4, we ob-
tain:

Corollary 5.5. Suppose that H : [0,T] x R x Rl — R satisfies (H1)-(H3),
(HL) and g : R! — R is a locally Lipschitz function. Then the value function
V', associated with L and g (where L is dual to H), is locally Lipschitz.

5.2. Bilateral and viscosity solutions

For H : [0,T] x R x R — R we give a definition of bilateral solutions of the
equation:
(7) _Ut+H(t’x’_Uz) = Oa

which was introduced by Barron, Jensen in [3] (calling them upper semicon-
tinuous solutions) and Frankowska in [9] (calling them lower semicontinuous
solutions). The name ’bilateral solutions’ comes from [2].
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Definition 5.6. We say that a function U € LSC([0,T] x R!) is a bilateral
solution of the equation (7), if for all (¢,x) € Dom(U), t € (0,T), the
following inequality holds

—pt+ H(t,z,—pz) =0, V(pt,pe) € D_U(t, ).

The following definition of the viscosity solutions comes from Crandall and
Lions:

Definition 5.7. We say that a function U € USC([0,T] x R!) is a subsolu-
tion of the equation (7), if for all (¢,x) € Dom(U), t € (0,T), the following
inequality holds

—Dt + H(t7x7 _p$) S Oa v(pt7pl‘) S DJFU(ta(L.)

Similarly, we say that U € LSC([0,T] x R!) is a supersolution, if for every
(t,x) € Dom(U), t € (0,T) the following inequality is satisfied

—pt + H(t,fE, _pl‘) > 07 v(ptapm) € D—U(tw%')

If U € C([0,T] x RY) is sub/super-solution, then U is a wiscosity solution of
the equation (7).

Definition 5.8. We say that U satisfies the boundary condition with g if
U(T,z) = g(x) for every z € R.

Theorem 5.9. Suppose that H : [0,T] x Rl x Rl — R satisfies (H1)-(H3),
(HL) and g : R — R U {4+o0} is a lower semicontinuous function. Then
the value function V', associated with L and g (where L is dual to H), is a
bilateral solution of the equation (7).

Theorem 5.9 can be obtained with a few changes of the results in the paper
of Plaskacz and Quincampoix [12]. This modification is necessary because
we weaken the lower boundary of Lagrangian and strengthen the assumption
about super linear growth.

Theorem 5.10 (Viscosity solutions). Let Uj,Us € C([0,7] x R!) and
Ui(T,z) = Us(T,z) for every x € RL. Let Uy and Uy be the wviscosity so-
lution of

~Up+ H(t,z,~U,) =0 in (0,T) x R,
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where H € C([0,T] x RY x RY) satisfies
|H(t,2,p) — H(t,z,p')| < K1+ |z)|p — |
for allt € [0,T] and z,p,p’ € R and
|H(t,z,p) — H(t',2',p)| < Kp([t —t'| + |z — 2"[)(1 +[p])

forallp e R, ¢, €[0,T], x,2' € Bg, R>0. Then Uy = Uy in [0,T] x R’
Theorem 5.10 can be found in [2]|, page 182.

Remark 5.11. If H : [0,7] x R! x Rl — R satisfies (H1)-(H4), then from
Lemma 4.1 we obtain |H(¢t,z,p) — H(t,z,p)| < 3CA+T)(1 + |z|)|p — P/
for all t € [0,T] and z,p,p’ € R'. So, if Hamiltonian H satisfies (H1)—(H4),
(HL) and U is continuous, then from the results (in local version) of Barron-
Jensen (see Theorem 2.3 in [3]), we deduce that U is a viscosity solution if
and only if U is a bilateral solution.

From Corollary 5.5, Theorems 5.9, 5.10, Remark 5.11 we obtain the corollary:

Corollary 5.12. Suppose that H : [0,T] x R' x Rl — R satisfies (H1)-(H4),
(HL) and g : RY — R is a locally Lipschitz function. Then in the class
of locally Lipschitz functions satisfying boundary condition with g the value
function V', associated with L and g (where L is dual to H), is the unique
bilateral (equivalently viscosity) solution of the equation (7).

5.3. Examples

Example 5.13. Let V(t,x) be the value function in the Meyer problem
given by the differential inclusion

(t) € F(a(t)),

where F': R — R is given by

1 ;x>0
F(x) = -1,1] ; ==
-1 ;oo <.
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For the terminal cost g(z) = = the value function V' : [0,7] x R — R,
V(t,z) = inf{g(x(T)) : z(-) € Sp(t,z)} can be easily calculated as

x4+ (T —t) ; >0
V(t’x):{x—(T—t) ;o <0.

Let us observe that at points (¢,x) = (¢,0), t € (0,T) subdifferential D_V (¢, x)
consists of (1, p; ), where p, > 1 and the Hamiltonian H (¢, z,p) = SUPfep(a) [
p is given by

p ; x>0
H(t,z,p)=4 Ip| ; =0
—p ; x<O.

The above Hamiltonian satisfies (H1)-(H4). But the value function V is not
a bilateral solution of the HJB equation because —1 + H(¢,0, —p,) # 0.

Example 5.14. A Hamiltonian H : [0,7] x R x R — R is given by the

formula
p+1l ;5 >0
p—1 ; x<0.

.

The above Hamiltonian satisfies (H1)—(H4). Lagrangian L : [0,T] xR xR —
[—1,400] of this Hamiltonian is given by the formula

-1 5 f=1,2>0

Lt,z,f)=q 40 ; [f#1
1 5 f=1,z<0.

For the terminal cost g(z) equalled 0 for z < 0, and x for > 0 the value
function V' : [0,7] x R — R can be easily calculated as

B lz| ; t—2z<T
Vw@_{T—t;t—x>T

For the terminal cost g(z) equalled +oo for z < 0, and x for > 0 the value
function V' : [0,7] x R — R can be easily calculated as

lz| 5 t—a<T
400 ; t—xz>T.

v = {
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Let us observe in both cases that at points (¢,2) = (¢,0), ¢t € (0,T) sub-
differential D_V(¢,x) consists of (0,p,) where p, € [—1,1]. So the value
function V' is not a bilateral solution of the HJB equation because —0+

H(t7 Oa _px) 7é 0.

Example 5.15. A Hamiltonian H : [0,7] x R x R — R is given by the

formula
p+1l ;5 <0
p—1 ;3 x>0.

H@wm%={

The above Hamiltonian satisfies (H1)—(H4). Lagrangian L : [0,T] xRXxR —
[—1, +0o0] of this Hamiltonian is given by the formula

-1 ; f=1,2<0
L{t,z,f)=q +o0 ; [#1
1 ;5 f=1Lz>0.
For the terminal cost g(z) = —|z| the value function V : [0,7] x R — R
can be easily calculated as V(t,x) = —|z|. Let us observe that at points

(t,x) = (t,0), t € (0,T) subdifferential DTV (¢,x) consists of (0,p,), where
pz € [—1,1]. So the value function V' is not a viscosity solution of the HJB
equation because —0 + H(t,0, —p,) % 0.

Example 5.16. A Hamiltonian H : [0,7] x R x R — R is given by the
formula

—1 Pl < g t £
H(top)=q T(pl- ) =1 5 Ipl> gl t 40
0 ; t=w.

The above Hamiltonian satisfies (H1)—(H4). Lagrangian L : [0,T] xR xR —
[0, +00] of this Hamiltonian is given by the formula

too 5 fE[TT) t#a

1 . _
L gy = AT SR

+00 ;o f#£0, t=x.

For the terminal cost g = 0 the value function V' : [0,7] x R — R can be
easily calculated as a smooth function V(¢,2) = T — t. Indeed, if we put
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z(-) = x, then L(7,z(7),%(7)) = 1 almost surely. Hence, V(t,z) < T —t.
Let z(-) be an absolutely continuous function, then the Lebesgue measure
of a set A := {7 € [t,T]; z(r) = 7, @(r) = 0} equals zero. Assume
by contradiction that the Lebesgue measure of A is positive. Then from
Lebesgue theorem about the point of density of the set A there exists a point
79 € A and a sequence 7, € A such that 7, # 79 and 7, — 79. Therefore
lim,, ((z(7,) —2(70))/ (T —70)) = 1 and &(79) = 0, so we have a contradiction.
Hence, for every absolutely continuous function the following inequality holds
almost surely L(7,x(7),#(7)) > 1. Finally we see that V(¢t,z) > T —t. Let
us observe that the smooth value function V' at the point (¢,t), t € (0,7)
is not a classical solution (in particular, it can be neither a viscosity nor a
bilateral solution) of the HJB equation because —(—1) + H(¢,t¢,0) # 0.

Remark 5.17. Examples 5.13, 5.14, 5.15, 5.16 show that the value func-
tion can be neither the bilateral solution, nor the viscosity solution nor the
classical solution. But in examples the value functions satisfy the inequality
—Vi+ H(t,x,—V,) > 0. It is not casual: see Theorem 5.20 at (ii).

5.4. Approximation of the value function

From Examples 5.13, 5.14, 5.15, 5.16 we know that the value function of
upper semicontinuous Hamiltonian does not have to be its bilateral, vis-
cosity and classical solution. One observes that this value function can be
approximated by value functions that are, in the class of locally Lipschitz
functions satisfying boundary condition, unique bilateral (viscosity) solu-
tions of corresponding Hamilton-Jacobi-Bellman equations. The following
theorem implies that this is a consequence of Corollaries 3.5, 4.6 and 5.12.

Theorem 5.18. Suppose that Hamiltonian H : [0,T] x R xR — R satisfying
conditions (H1)-(H4) and g, : Rl — R is locally Lipschitz and g : Rl —
RU{+o0} is a lower semicontinuous function, moreover g, /" g. If V is the
value function associated with L and g (where L is dual to H), then there
exists a sequence of functions Vy, : [0, T| xR — R and H,, : [0,T]xRxR — R
such that:

(i) H, satisfies assumptions (H1)—(H4), (HL),

(ii) V,, is the value function associated with L, and g, (where L, are dual
to Hy),
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(iii) 4n the class of locally Lipschitz functions satisfying boundary condi-
tion with g, the value function V,, is the unique bilateral (equivalently
viscosity) solution of equation —Uy + Hy(t,z,—U,) = 0.

(iv) Vi, /' V (e-limV,, =V) and H,, \, H (h-lim H,, = H).

We show that in the case of continuous Hamiltonian the value function is its
bilateral solution. Let us notice that generally Theorem 5.9 can not be used
in the case of continuous Hamiltonians because they are not regular enough
(see Remark 4.3).

Proposition 5.19 (Barron and Jensen). Let H,, H : [0,T] x R x Rl — R
and assume that H,, are continuous. Then:

(i) If U, is the bilateral (viscosity) solution of equation —Us+Hy(t, z, —Uy)
=0 for everyn € N, elimU, = U (U, = U), H, = H uniformly on
compact set, then U is the bilateral (viscosity) solution of equality (7).

(i) If U, is the supersolution of —Uy + Hy(t,z,—U,) = 0 for every n € N,
e-lim U, = U and h-lim H,, = H, then U is the supersolution of equality

(7).

Proposition 5.19 comes from the paper of Barron and Jensen (Proposition
3.2, 3]). A consequence of Corollaries 3.2, 3.5, 4.6, Theorem 5.9 and Propo-
sition 5.19 is the following:

Theorem 5.20. Suppose that H : [0,T] x Rl x R — R satisfies (H1)—(H4)
and g : Rl — RU {+00} is a lower semicontinuous function. Then:

(i) If H is a continuous function, then the value function V', associated with
L and g (where L is dual to H), is the bilateral solution of equation (7).

(ii) If H is upper semicontinuous function, then the value function V,
associated with L and g (where L is dual to H), is the supersolution of
equation (7).

6. DEFINITION OF APPROXIMATE SOLUTIONS OF HJB EQUATION

For upper semicontinuous Hamiltonian H : [0,7] x R! x R — R we give a
definition of an approximate solution of equation (7) —Uy+ H (t,z, —U,) = 0.
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Definition 6.1. We say that the function U : [0,T] x Rl — R U {+o0} is
an approzimate solution of equation (7) if there exist sequences U, : [0, T]x
R! — R and H, : [0,T] x R! x R" — R such that

1. U, is locally Lipschitz and U,, /" U,
2. H, satisfies assumptions (H1)—(H4), (HL), and H, \, H,

3. U, is a bilateral (equivalently viscosity) solution of
U, + Hy(t,z,~Uy) = 0.

Let us notice that approximate solutions can be interpreted as limits of some
bilateral solutions (or viscosity solutions see Remark 5.11). Moreover, Ex-
ample 5.16 implies that the approximate solution can be neither the bilateral
solution nor the viscosity solution nor the classical solution.

In Examples 5.13 and 5.14 one can see that the value function is not the
bilateral solution only at points (¢,0) of non-continuity of Hamiltonian. In
Examples 5.15 the value function is not the viscosity solution only at points
(t,0) of non-continuity of Hamiltonian. In Example 5.16 the value function is
the classical solution (in particular, it is the viscosity and the bilateral solu-
tion) beyond points (t,t) of non-continuity of Hamiltonian. Using arguments
as in the proof of Proposition 5.19 we can deduce the general proposition
which says when the approximate solution is the bilateral or the viscosity or
the classical solution at particular points.

Proposition 6.2 (Compatibility). The approzimate solution U of equation
(7) is at a point (t,x), where t € (0,T),

(i) the bilateral solution of equation (7) if H is continuous on a set {t} X
{z} x D_U(t,x),
(ii) the wiscosity solution of equation (7) if U is continuous and H is con-
tinuous on a set {t} x {x} x DYU(t,z),
(iii) the classical solution of equation (7) if U is differentiable and H is
continuous at a point (t,xz, VU (t,x)).

Furthermore, every approzimate solution is the supersolution.

In particular, if Hamiltonian is continuous on the whole domain, then the
approximate solution is the bilateral solution and the viscosity solution if U
is continuous and the classical solution if U is differentiable. Summarizing,
the regularity of Hamiltonian mainly decides when the approximate solution
is the bilateral or the viscosity or the classical solution.
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Theorem 6.3 (Existence and uniqueness). Let H : [0,T] x R x Rl — R
satisfy (H1)—(H4) and g : R' — RU{+oc} be a finite or lower bounded lower
semicontinuous function. Then the value function V', associated with L and
g (where L is dual to H), is the unique approzimate solution of equation (7)
in the class functions satisfying boundary condition with g.

Proof. Due to Theorem 5.18 we conclude that the value function V is
the approximate solution satisfying the boundary condition with g because
assumptions from Theorem 6.3 allow us to increasingly approximate the
function g by locally Lipschitz functions. However, the uniqueness can be
obtained in the following way: let U be the approximate solution such that
U(T,z) = g(x), then there exist sequences U, and H, such that U, /" U
and H, \, H. From Corollary 5.12 we have U,, = V,, and from Corollary 3.5
Vo, /' V. SinceU,, /*Vand U, /U, U=V. [

Theoretical results that are obtained in this paper give the method of deter-
mining the optimal trajectory in Bolza problem, in which Lagrangian satisfies
(L1)~(L5) and a lower semicontinuous terminal cost function is finite or lower
bounded. The procedure is: we determine dual Hamiltonian to Lagrangian,
next we approximate Hamiltonian and the terminal cost function using such
regular functions for which finding optimal trajectories of value functions
is possible. From Remark 3.4 we conclude that the accumulation point of
optimal trajectories is the optimal trajectory in Bolza problem.
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