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Abstra
t

In this paper we give examples of value fun
tions in Bolza prob-

lem that are not bilateral or vis
osity solutions and an example of

a smooth value fun
tion that is even not a 
lassi
 solution (in par-

ti
ular, it 
an be neither the vis
osity nor the bilateral solution) of

Hamilton-Ja
obi-Bellman equation with upper semi
ontinuous Hamil-

tonian. Good properties of value fun
tions motivate us to introdu
e

approximate solutions of equations with su
h type Hamiltonians. We

show that the value fun
tion is the unique approximate solution.
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1. Introdu
tion

Having a Hamiltonian H : [0, T ]×Rl × Rl → R, we 
an de�ne a Lagrangian

L : [0, T ] × Rl × Rl → R ∪ {+∞} by

L(t, x, f) := sup
p∈Rl

〈f, p〉 −H(t, x, p),

then we have L(t, x, f) = H∗(t, x, f), where "

∗
" denotes the Legendre-

Fen
hel transform with respe
t to the last variable. Analyzing the problems
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in this paper we 
on
entrate on upper semi
ontinuous Hamiltonians of linear

growth and 
onvex with respe
t to the last variable. In view of the inverse

pro
edure we 
an obtain the well known equality H(t, x, p) = L∗(t, x, p).

Given a point (t0, x0) ∈ [0, T ] × Rl
, a terminal 
ost g : Rl → R ∪ {+∞}

and Lagrangian, we 
onsider the generalized problem of Bolza:

P(t0, x0) : minimize g(x(T )) +

∫ T

t0

L(t, x(t), ẋ(t))dt subje
t to x(t0) = x0

with the minimization 
arried out over all absolutely 
ontinuous ar
s x :
[t0, T ] → Rl

.

Optimal 
ontrol problems 
an be reformulated in Bolza problem: see

Clarke [7℄ or Bardi and Capuzzo-Dol
etta [2℄. In se
tion 2 we dis
uss 
ondi-

tions and fa
ts that we need in further se
tions of this paper.

Se
tion 3 studies regularity of the value function V : [0, T ] × Rl →
R ∪ {+∞}, de�ned as the optimal value in P(t0, x0) parameterized by the

initial 
ondition. Using te
hniques from Cesari [6℄ we show that in
reasingly


onvergent sequen
e of Lagrangians Ln to the Lagrangian L (i.e., Ln ≤ Ln+1

and Ln → L � pointwise) implies in
reasing 
onvergen
e of value fun
tions

Vn to value fun
tion V , whi
h parti
ularly is an epigraphi
al 
onvergen
e.

Furthermore, if xn(·) is optimal traje
tory of the value fun
tion Vn(t, x), then
a

umulation points of a sequen
e {xn(·)}n∈N are optimal traje
tories of the

value fun
tion V (t, x). From the duality, the previous result 
an be stated in

the following way: de
reasing 
onvergen
e of a sequen
e of Hamiltonians Hn

to the Hamiltonian H, so that it is also hipographi
al 
onvergen
e, implies

in
reasing 
onvergen
e of value fun
tions Vn to the value fun
tion V . Similar

problems 
on
erning 
onvergen
e of value fun
tions were investigated by

Buttazzo and Dal Maso [5℄, Briani [4℄ and Frankowska [9℄.

In Se
tion 4 we show that upper semi
ontinuous Hamiltonian H of linear

growth and 
onvex with respe
t to the last variable 
an be de
reasingly ap-

proximated by Hamiltonians Hn (i.e., Hn+1 ≤ Hn andHn → H � pointwise),

whi
h inherit properties of H, besides, they are lo
ally Lips
hitz uniformly

with respe
t to p (i.e., |H(t, x, p)−H(t′, x′, p)| ≤ C(|t− t′|+ |x−x′|)(1+ |p|)
for all p ∈ Rl

, t, t′ ∈ [0, T ], x, x′ ∈ BR := {x ∈ Rl; |x| < R}). Next, we

formulate the above fa
t in Lagrangian notation, whi
h gives us a version

of Antosiewi
z-Cellina theorem (Theorem 1.13.1, [1℄). Problems of the 
on-

vergen
e of value fun
tions and the approximation of Hamiltonian were also

studied by Goebel (see [10℄), for the 
ase of 
on
ave-
onvex Hamiltonian.
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In Se
tion 5 we give examples of upper semi
ontinuous Hamiltonians, whose

value fun
tions are not bilateral or vis
osity solutions and even an example

of a smooth value fun
tion that is not the 
lassi
 solution (in parti
ular,

it 
an be neither the vis
osity nor the bilateral solution). Moreover, we

show (not ne
essarily with an assumption about 
onvexity of Lagrangian)

that the value fun
tion is lo
ally Lips
hitz. Results obtained in se
tions

3 and 4 allow to 
on
lude that the value fun
tion of upper semi
ontinu-

ous Hamiltonian 
an be monotoni
ally approximated by lo
ally Lips
hitz

value fun
tions, whi
h are, in the 
lass of lo
ally Lips
hitz fun
tions satis-

fying boundary 
ondition, unique bilateral (vis
osity) solutions of adequate

Hamilton-Ja
obi-Bellman equations. Assuming that Hamiltonian is 
ontin-

uous, then Barron and Jensen Proposition 3.2 in [3℄ and our studies imply

that the value fun
tion is a bilateral solution.

In Se
tion 6 we propose de�nitions of approximate solutions of Hamilton-

Ja
obi-Bellman equation, with upper semi
ontinuous Hamiltonian. Of 
ourse,

the o�ered de�nition in
ludes examples from Se
tion 5. We 
ompare approx-

imate solutions to bilateral, vis
osity and 
lassi
al solutions. Finally, we for-

mulate a theorem about existen
e and uniqueness of approximate solutions.

2. Preliminaries

Let us introdu
e 
onditions needed in this paper whi
h, in fa
t, are typi
al

of optimal 
ontrol problems.

1. Conditions responding to Hamiltonian H : [0, T ] × Rl × Rl → R

(H1) H is upper semi
ontinuous,

(H2) H(t, x, p) is 
onvex with respe
t to p for every t ∈ [0, T ], x ∈ Rl
,

(H3) H(t, x, p) ≤ C(1 + |x|)(|p| + 1) for every t ∈ [0, T ], x, p ∈ Rl
and


onstant C > 0,

(H4) H(t, x, p) ≥ −C(1 + |x|)(|p| + 1) for every t ∈ [0, T ], x, p ∈ Rl
and


onstant C > 0.

2. Conditions responding to Lagrangian L : [0, T ] × Rl × Rl → R ∪ {+∞}

(L1) L is lower semi
ontinuous,

(L2) L(t, x, f) is 
onvex, proper with respe
t to f for every t ∈ [0, T ],
x ∈ Rl

,
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(L3) L(t, x, f) ≥ −C(1+|x|) for every t ∈ [0, T ], x, f ∈ Rl
and 
onstant

C > 0,

(L4) there exists a 
onstant C > 0 su
h that for all f, x ∈ Rl
and

t ∈ [0, T ] the following impli
ation pro
eeds:

|f | > C(1 + |x|) ⇒ L(t, x, f) = +∞,

(L5) there exists a 
onstant C > 0 su
h that for all t ∈ [0, T ], x ∈ Rl

there exists f ∈ Rl
su
h that max{L(t, x, f), |f |} ≤ C(1 + |x|).

3. Lo
ally Lips
hitz type 
ondition of the Hamiltonian:

(HL) ∀R > 0 ∃K > 0 ∀p ∈ Rl ∀t, t′ ∈ [0, T ] ∀x, x′ ∈ BR the following

inequality holds |H(t, x, p) − H(t′, x′, p)| ≤ K(|t − t′| + |x − x′|)
(|p| + 1).

It is not hard to prove the following equivalen
es: the �rst one says that

(H1)�(H3) are satis�ed if and only if (L1)�(L4) are satis�ed. The se
ond

one says that (H1)�(H4) are satis�ed if and only if (L1)�(L5) are satis�ed.

Moreover, if H satis�es (H1)�(H3) and (HL), then Q(t, x) := Epi(L(t, x, ·))
(where L is dual to H) is lo
ally Lips
hitz with respe
t to Hausdor� distan
e

(see Proposition 2.2, [12℄).

Assume that g : Rl → R∪{+∞} is a lower semi
ontinuous fun
tion and

Lagrangian L : [0, T ] × Rl × Rl → R ∪ {+∞} satis�es (L1), (L3) and (L4),

then the value fun
tion

V (t0, x0) = inf
x(·)∈AC[t0,T ] x(t0)=x0

g(x(T )) +

∫ T

t0

L(t, x(t), ẋ(t))dt

is de�ned from [0, T ] × Rl
in R ∪ {+∞}. Moreover modifying proofs in

the paper of Plaska
z-Quin
ampoix [12℄ we dedu
e that the value fun
tion

is lower semi
ontinuous and has Lips
hitz minimizer if Lagrangian satis�es


onditions (L1)�(L4).

Subdi�erential D−w(x0) of the lower semi
ontinuous fun
tion w : Rd →
R ∪ {+∞} at x0 ∈ Dom(w) is given by

D−w(x0) =

{

p ∈ Rd ; lim inf
x→x0

w(x) − w(x0) − 〈p, x− x0〉

|x− x0|
≥ 0

}

.

Subdi�erential D+w(x0) of the upper semi
ontinuous fun
tion w : Rd →
R ∪ {−∞} at x0 ∈ Dom(w) is given by D+w(x0) = −D−(−w(x0)).
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Moreover, properties (L1)�(L4) imply that the set-valued map Q has the

following property (
f. Se
tion 10.5 in [6℄)

Q(t, x) =
⋂

ε>0


onv Q(t, x, ε),(1)

where

Q(t, x, ε) :=
⋃

|t−t′|<ε, |x−x′|<ε

Q(t′, x′).

3. Monotoni
 
onvergen
e of the value fun
tion

We use the te
hnique from Cesari [6℄ to prove the result of monotoni
 
on-

vergen
e of the value fun
tion.

De�nition 3.1 (Kuratowski epi/hypo-
onvergen
e). A sequen
e of fun
-

tions fn : Rl → [−∞,+∞], n = 1, 2, . . . , epi-
onverges to f (e-lim fn = f for

short) if for every point x ∈ Rl

(i) lim inf fn(xn) ≥ f(x) for every sequen
e xn → x,

(ii) lim sup fn(xn) ≤ f(x) for some sequen
e xn → x.

We say that a sequen
e of fun
tions fn is hypo-
onvergent to f (h-lim fn = f
for short) if e-lim(−fn) = (−f).

Let fn, f : Rl → (−∞,+∞] be upper (lower) semi
ontinuous and fn ց f
(fn ր f), then h-lim fn = f (e-lim fn = f). Moreover, if fn, f : Rl → R
are 
ontinuous and fn ց f , then the sequen
e of fun
tions fn is uniformly


onvergent on a 
ompa
t set to f . Sin
e fn, f : Rl → R are 
onvex, we obtain

the following equivalen
e fn ց f if and only if f∗n ր f∗. The su�
ient


ondition in the last equivalen
e 
an be proved by using the epigraphi
al


onvergen
e of the sequen
e {f∗n}n∈N and super linear growth of the fun
tion

f∗n. For details, 
onsult Ro
kafellar and Wets [15℄. These properties give us

the following 
orollary.

Corollary 3.2. Suppose that Hn,H are dual to Ln, L respe
tively, then the

following properties are equivalent:

(i) Hamiltonians Hn,H satisfy (H1)�(H3) and Hn ց H (this implies h-

limHn = H),
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(ii) Lagrangians Ln, L satisfy (L1)�(L4) and Ln ր L (this implies e-

limLn = L).

Moreover, if Hn,H are 
ontinuous and Hn ց H, then sequen
e of fun
tions

Hn is uniformly 
onvergent on a 
ompa
t set to H.

Theorem 3.3 (Convergen
e). Suppose that Lagrangians Ln, L : [0, T ]×Rl×
Rl → R∪{+∞} satisfy 
onditions (L1)�(L4) and gn, g : Rl → R∪{+∞} are

lower semi
ontinuous fun
tions, moreover, Ln ր L and gn ր g. If Vn, V
are value fun
tions asso
iated with Ln, gn and L, g respe
tively, then Vn ր V
(this implies e-lim Vn = V ).

P roof. Fix (t0, x0). Monotoni
ity of Ln, gn implies that Vn(t0, x0) ≤
Vn+1(t0, x0) ≤ V (t0, x0). Let us de�ne an auxiliary fun
tion W (t0, x0) :=
limn→∞ Vn(t0, x0), then we have W ≤ V . To 
omplete the proof it is

enough to show that W = V . If W (t0, x0) = +∞, then V (t0, x0) = +∞,

so W (t0, x0) = V (t0, x0). If W (t0, x0) is �nite, then also Vn(t0, x0) is �-

nite. Let every element of the sequen
e of absolutely 
ontinuous fun
tions

xn : [t0, T ] → Rl
su
h that xn(t0) = x0, be a minimizer of 
orresponding

Vn(t0, x0). From the de�nition of W (t0, x0) we obtain

gn(xn(T )) +

∫ T

t0

Ln(t, xn(t), ẋn(t))dt ≤W (t0, x0).(2)

Next, from monotoni
ity of Ln, the following inequality is satis�ed

∫ T

t0

L1(t, xn(t), ẋn(t))dt ≤

∫ T

t0

Ln(t, xn(t), ẋn(t))dt < +∞.

Using assumption (L4) to L1, we have |ẋn(t)| ≤ C(1+ |xn(t)|) for almost all

t ∈ [t0, T ]. By the Gronwall inequality, we have |xn(t)| ≤ (|x0|+ TC)eTC =:
C1 for n ∈ N, t ∈ [t0, T ] and |ẋn(t)| ≤ C(1 + C1) for n ∈ N, a.a. t ∈
[t0, T ]. By the Dunford-Pettis 
riterion (Theorem 0.3.4 in [1℄), there exists

a subsequen
e (again denoted by) xn su
h that xn 
onverges uniformely

to absolutely 
ontinuous fun
tion x and ẋn 
onverges weakly in L1
to ẋ.

Besides, from (L3) applied to L1, we have −C2(1 +C1) ≤ Ln(t, xn(t), ẋn(t))
for n ∈ N, a.a. t ∈ [t0, T ]. Let δ > 0. Sin
e e-lim gn = g and (2) is true, we

get g(x(T )) is �nite and g(x(T )) − δ < gn(xn(T )) for almost all n ∈ N. We


an also assume that the following inequality is satis�ed:

∫ T

t0

Ln(t, xn(t), ẋn(t))dt ≤W (t0, x0) − g(x(T )) + δ.
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A

ording to Mazur Lemma, there exist non-negative reals λk
i,N su
h that

∑N
i=1 λ

k
i,N = 1 and

∑N
i=1 λ

k
i,N ẋk+i →N ẋ in L1

for all k ∈ N. Then there

exists a sequen
e Nn su
h that for every k ∈ N

yk
n(t) =

Nn
∑

i=1

λk
i,Nn

ẋk+i(t) →n ẋ(t) for a.a. t ∈ [t0, T ].(3)

Let

ηn(t) = Ln(t, xn(t), ẋn(t)), ηk
n =

Nn
∑

i

λk
i,Nn

ηk+i

and

ηk(t) = lim inf
n

ηk
n(t), η(t) = lim inf

k
ηk(t).

The following integral 
an be bounded

∫ T

t0

ηk
n(t)dt =

Nn
∑

i

λk
i,Nn

∫ T

t0

ηk+i(t)dt ≤W (t0, x0) − g(x(T )) + δ.(4)

Using the inequality (4) and Fatou Lemma, we obtain

∫ T

t0

η(t)dt ≤ lim inf
k

lim inf
n

∫ T

t0

ηk
n(t)dt ≤W (t0, x0) − g(x(T )) + δ.

Let s ∈ N be �xed. We will show that for almost all t ∈ [t0, T ] the following
inequality is satis�ed

η(t) ≥ Ls(t, x(t), ẋ(t)).(5)

Let us de�ne Qs(t, x) := Epi(Ls(t, x, ·)). Fix t ∈ [t0, T ] su
h that ηn(t), ẋn(t),
yk

n(t), ηk
n(t), ηk(t), η(t) are well de�ned and �nite. For ε > 0 there exists

k0 ≥ s su
h that for every k ≥ k0 and all i ∈ N we have |xk+i(t)− x(t)| < ε.
For n ≥ s

(ẋn(t), ηn(t)) ∈ Qs(t, xn(t)),

for k ≥ k0, i ∈ N

(ẋk+i(t), ηk+i(t)) ∈ Qs(t, x(t), ε),
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for k ≥ k0, n ∈ N

(yk
n(t), ηk

n(t)) ∈ 
onv Qs(t, x(t), ε),

so

(ẋ(t), ηk(t)) ∈ 
onv Qs(t, x(t), ε),

so

(ẋ(t), η(t)) ∈ 
onv Qs(t, x(t), ε),

ε is arbitrary so

(ẋ(t), η(t)) ∈
⋂

ε>0


onv Qs(t, x(t), ε).

This and (1) imply η(t) ≥ Ls(t, x(t), ẋ(t)). Observe that we obtain (5) for

almost all t ∈ [t0, T ]. Be
ause s ∈ N is also arbitrary, for almost all t ∈ [t0, T ]
and for all n ∈ N we obtain inequality

η(t) ≥ Ln(t, x(t), ẋ(t)).

Then in limit we obtain inequality

η(t) ≥ L(t, x(t), ẋ(t)) for a.a. t ∈ [t0, T ].

Summarizing, we obtain the following inequality

g(x(T )) +

∫ T

t0

L(t, x(t), ẋ(t))dt ≤W (t0, x0) + δ.

Consequently, we have inequality V (t0, x0) ≤W (t0, x0) + δ. From arbitrari-

ness of δ we get V (t0, x0) ≤W (t0, x0), so V (t0, x0) = W (t0, x0).

Remark 3.4. Suppose that the assumptions of Theorem 3.3 are satis�ed.

Then it is not hard to noti
e from the proof of this theorem that if xn(·) is
optimal traje
tory of the value fun
tion Vn(t, x), then a

umulation points of

a sequen
e {xn(·)}n∈N are optimal traje
tories of the value fun
tion V (t, x).

From Theorem 3.3 and Corollary 3.2 we obtain:

Corollary 3.5. Suppose that Hamiltonians Hn,H : [0, T ] × Rl × Rl → R
satisfy 
onditions (H1)�(H3) and gn, g : Rl → R ∪ {+∞} are lower semi-


ontinuous fun
tions, moreover, Hn ց H and gn ր g. If Vn, V are value
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fun
tions asso
iated with Ln, gn and L, g respe
tively (where Ln, L are dual

to Hn,H), then Vn ր V (this implies e-lim Vn = V ).

4. Approximation of the us
 Hamiltonian

Using the te
hnique similar to the one used in the proof of Antosiewi
z-

Cellina theorem (see Theorem 1.13.1, [1℄), we are going to establish the

approximation result.

Lemma 4.1. Let a fun
tion H : Rm × Rl → R satisfy the following 
ondi-

tions:

(A) H(x, p) is 
onvex with respe
t to p for every x ∈ Rm
,

(B) |H(x, p)| ≤ C(1 + |x|)(|p| + 1) for every x ∈ Rm
, p ∈ Rl

and 
onstant

C > 0,

then we obtain the following inequality |H(x, p)−H(x, p′)| ≤ 3C(1+|x|)|p−p′|
for every x ∈ Rm

and p, p′ ∈ Rl
.

P roof. Using a similar argument as in the proof of (Theorem 10.4 [14℄), we

show the 
on
lusion of this lemma. Indeed, let R > 2, p, p′ ∈ BR/2, x ∈ Rm

and p 6= p′. Put u = (p′ − p)/|p′ − p|, q = p + Ru and ε = |p′ − p|/R. So

we obtain p′ = (1 − ε)p + εq. We know that H satis�es (A) and (B), so

H(x, p′) ≤ (1 − ε)H(x, p) + εH(x, q),

H(x, p′) −H(x, p) ≤ −εH(x, p) + εH(x, q)

≤ εC(1 + |x|)(1 + |p| + 1 + |q|)

≤ εC(1 + |x|)(1 + |p| + 1 + |p| +R)

≤ εC(1 + |x|)(2 + 2R)

= C(1 + |x|)|p′ − p|(2/R + 2)

≤ 3C(1 + |x|)|p′ − p|.

Changing p and p′, we obtain H(x, p) − H(x, p′) ≤ 3C(1 + |x|)|p − p′|. So

|H(x, p)−H(x, p′)| ≤ 3C(1 + |x|)|p− p′| for every p, p′ ∈ BR/2 and x ∈ Rm
.

From arbitrariness of R > 2 we obtain the 
on
lusion of Lemma.

Proposition 4.2. Let a fun
tion H : Rm × Rl → R satisfy 
onditions (A),

(B) and moreover:
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(D) ∀x0 ∈ Rm ∃R > 0 ∃K > 0 ∀p ∈ Rl ∀x, x′ ∈ B(x0, R) the following

inequality holds |H(x, p) −H(x′, p)| ≤ K|x− x′|(|p| + 1).

Then H is lo
ally Lips
hitz.

P roof. Let us �x x0 ∈ Rm
, p0 ∈ Rl

. Then there exists K > 0 and R > 0
su
h that |H(x, p) − H(x′, p)| ≤ K|x − x′|(|p| + 1) for all x, x′ ∈ B(x0, R)
and p ∈ Rl

. From Lemma 4.1, we obtain |H(x′, p)−H(x′, p′)| ≤ 3C(1+ |x′|)
|p − p′| for all p, p′ ∈ Rl

and x′ ∈ Rm
. Then we have |H(x, p) −H(x′, p′)| ≤

K(R+ |p0|+ 1)|x−x′|+ 3C(1 +R+ |x0|)|p− p′| for all x, x′ ∈ B(x0, R) and
p, p′ ∈ B(p0, R).

Remark 4.3. Hamiltonian H : R × R 7→ R given by the following formula

H(x, p) =











0 ; p ≤ 1
|x| , x 6= 0

p− 1
|x| ; p > 1

|x| , x 6= 0

0 ; x = 0,

is lo
ally Lips
hitz and satis�es (A), (B), but it does not satisfy (D). La-

grangian L : R × R → [0,+∞], dual to Hamiltonian H is given as

L(x, f) =



















+∞ ; f /∈ [0, 1], x 6= 0
1
|x|f ; f ∈ [0, 1], x 6= 0

0 ; f = 0, x = 0

+∞ ; f 6= 0, x = 0.

Note that the stru
ture of the Hamiltonian above is so di�erent from the

stru
ture of the Hamiltonians satisfying (D), that the multifun
tion Q(t, x) :=
Epi(L(t, x, ·)) is not even upper semi
ontinuous with respe
t to Hausdor�

distan
e.

Theorem 4.4 (Approximation). Let fun
tion H : Rm × Rl → R be upper

semi
ontinuous and satisfy 
onditions (A), (B). Then there exists a family

of fun
tions {Hn : Rm × Rl → R}n∈N, satisfying the following 
onditions:

1. H(x, p) ≤ Hn+1(x, p) ≤ Hn(x, p) for all n ∈ N, x ∈ Rm
, p ∈ Rl

,

2. Hn(x, p) → H(x, p) for all x ∈ Rm
, p ∈ Rl

,

3. ∀n ∈ N ∀x0 ∈ Rm ∃r > 0, ∃K > 0 ∀p ∈ Rl, ∀x, x′ ∈ B(x0, r) the

following inequality pro
eeds |Hn(x, p) −Hn(x′, p)| ≤ K|x− x′|(|p| + 1),
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4. |Hn(x, p)| ≤ 2C(1 + |x|)(|p| + 1) for all ;n ∈ N, x ∈ Rm, p ∈ Rl
,

5. Hn(x, p) is 
onvex with respe
t to p for every n ∈ N, x ∈ Rm
,

6. Hn is lo
ally Lips
hitz for all n ∈ N.

P roof. There exists a family of lo
ally Lips
hitz partition of unity {ψn
λ :

Rm → [0,+∞)}λ∈Λn
su
h that

(i) suppψn
λ ⊂ B(xn

λ,
1
3n ),

(ii)

∑

λ∈Λn
ψn

λ(x) = 1,

(iii) Let us �x n ∈ N and x ∈ Rm
. Then there exist: an open neigh-

bourhood U of a point x and λn
1 , λ

n
2 , . . . , λ

n
sn

∈ Λn su
h that if λ ∈
Λn \ {λn

1 , λ
n
2 , . . . , λ

n
sn
} and y ∈ U , then ψn

λ(y) = 0.

For λ ∈ Λn we de�ne a fun
tion Hn
λ : Rl → R by formula

Hn
λ (p) := sup

z∈B(xn
λ
, 2

3n )

H(z, p).

Next let us de�ne Hn : Rm × Rl → R by

Hn(x, p) :=
∑

λ∈Λn

ψn
λ(x)Hn

λ (p).

Now we show that a family of fun
tions {Hn}n∈N satis�es all the 
on
lusions

of our theorem. It is easy to see that for x ∈ Rm
there exist λn

1 , λ
n
2 , . . . , λ

n
sn

∈
Λn satisfying the equality:

Hn(x, p) =

sn
∑

j=1

ψn
λn

j
(x)Hn

λn
j
(p) for p ∈ Rl.(6)

Moreover,

∑sn

j=1 ψ
n
λn

j
(x) = 1 and ψn

λn
j
(x) > 0 for j ∈ {1, 2, . . . , sn}.

The proof of 5 is a 
onsequen
e of 
onvexity Hn
λ (·) and (6).

To prove 4, let us �x x ∈ Rm
. Let Hn(x, p) =

∑sn

j=1 ψ
n
λn

j
(x)Hn

λn
j
(p)

be as in (6). Sin
e x ∈
⋂sn

j=1B(xn
λn

j
, 1

3n ), for z ∈
⋃sn

j=1B(xn
λn

j
, 2

3n ) we have

|z − x| ≤ 1 (|z| ≤ 1 + |x|). Therefore for j ∈ {1, 2, . . . , sn} we obtain
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|Hn
λn

j
(p)| ≤ sup

z∈B(xn
λn

j
, 2

3n )

|H(z, p)|

≤ sup
z∈B(xn

λn
j

, 2

3n )

C(1 + |z|)(|p| + 1)

≤ C(2 + |x|)(|p| + 1)

≤ 2C(1 + |x|)(|p| + 1).

That is why we have the inequality |Hn(x, p)| ≤ 2C(1 + |x|)(|p| + 1).

To proof 1: We shall determine x ∈ Rm
. Let Hn(x, p) =

∑sn

j=1 ψ
n
λn

j
(x)

Hn
λn

j
(p) be as in (6). Sin
e x ∈

⋂sn

j=1B(xn
λn

j
, 1

3n ), so Hn(x, p) ≥ H(x, p).

Let H1+n(x, p) =
∑s1+n

i=1 ψ1+n
λ1+n

i

(x)H1+n
λ1+n

i

(p) be as in (6). We show the fol-

lowing in
lusion B(x1+n
λ1+n

i

, 2
31+n ) ⊂ B(xn

λn
j
, 2

3n ) for i ∈ {1, 2, . . . , s1+n}, j ∈

{1, 2, . . . , sn}. Essentially, we know that x ∈
⋂sn

j=1B(xn
λn

j
, 1

3n ) and x ∈
⋂s1+n

i=1 B(x1+n

λ1+n
i

, 1
31+n ). Let us take z ∈ B(x1+n

λ1+n
i

, 2
31+n ). Then we obtain

∣

∣

∣
z − xn

λn
j

∣

∣

∣
≤

∣

∣

∣
z − x1+n

λ1+n
i

∣

∣

∣
+

∣

∣

∣
x1+n

λ1+n
i

− x
∣

∣

∣
+

∣

∣

∣
x− xn

λn
j

∣

∣

∣

<
2

31+n
+

1

31+n
+

1

3n
=

2

3n
.

Using the in
lusion we have inequality

Hn
λn

j
(p) ≥ H1+n

λ1+n
i

(p)

for i ∈ {1, 2, . . . , s1+n} j ∈ {1, 2, . . . , sn}. Hen
e,

Hn
λn

j
(p) =

s1+n
∑

i=1

ψ1+n

λ1+n
i

(x)Hn
λn

j
(p) ≥

s1+n
∑

i=1

ψ1+n

λ1+n
i

(x)H1+n

λ1+n
i

(p) = H1+n(x, p)

for j ∈ {1, 2, . . . , sn}. This implies inequality

Hn(x, p) =

sn
∑

j=1

ψn
λn

j
(x)Hn

λn
j
(p) ≥

sn
∑

j=1

ψn
λn

j
(x)H1+n(x, p) = H1+n(x, p).
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To proof 2: Let us �x x0 ∈ Rm
and p0 ∈ Rl

. Sin
e H is upper semi-


ontinuous, ∀ε>0 ∃δ>0 su
h that |x − x0| < δ ⇒ H(x, p0) ≤ H(x0, p0) +
ε. Let n0 ∈ N be su
h that

1
3n−1 < δ for n ≥ n0. Let Hn(x0, p0) =

∑sn

j=1 ψ
n
λn

j
(x0)H

n
λn

j
(p0) be as in (6). Considering that x0 ∈

⋂sn

j=1B(xn
λn

j
, 1

3n ),

we obtain

⋃sn

j=1B(xn
λn

j
, 2

3n ) ⊂ B(x0, δ) for n ≥ n0. Hen
e, Hn
λn

j
(p0) ≤

H(x0, p0) + ε for j ∈ {1, 2, . . . , sn}, n ≥ n0. Consequently, Hn(x0, p0) ≤
H(x0, p0) + ε for n ≥ n0. Using proof 1, we have Hn(x0, p0) ≥ H(x0, p0) so
Hn(x0, p0) → H(x0, p0).

To proof 3: Let us �x x0 ∈ Rm
and n ∈ N. There exists an open

neighbourhood U of a point x0 and λn
1 , λ

n
2 , . . . , λ

n
s ∈ Λn su
h that

Hn(y, p) = ψn
λn
1
(y)Hn

λn
1
(p) + ψn

λn
2
(y)Hn

λn
2
(p) + . . . + ψn

λn
s
(y)Hn

λn
s
(p)

for y ∈ U, p ∈ Rl
. Furthermore, we 
an assume that ψn

λn
1
, ψn

λn
2
, . . . , ψn

λn
s
are

Lips
hitz in U with 
onstant η. Let R > 0 be so large that

⋃s
j=1B(xn

λn
j
, 2

3n )

⊂ BR and let k = η · s · 2C(1 +R). Then for j ∈ {1, 2, . . . , s} we have

|Hn
λn

j
(p)| ≤ sup

x∈B(xn
λn

j
, 2

3n )

|H(x, p)|

≤ sup
x∈B(xn

λn
j

, 2

3n )

2C(1 + |x|)(|p| + 1) ≤ 2C(1 +R)(|p| + 1).

Finally, for y, y′ ∈ U and p ∈ Rl
we obtain:

|Hn(y, p) −Hn(y′, p)| ≤

s
∑

j=1

|ψn
λn

j
(y) − ψn

λn
j
(y′)||Hn

λn
j
(p)|

≤
s

∑

j=1

η|y − y′||Hn
λn

j
(p)|

≤ η · s · 2C(1 +R)|y − y′|(|p| + 1)

= k|y − y′|(|p| + 1).

To proof 6: It is a 
onsequen
e from Proposition 4.2.

Formulating Theorem 4.4 through the multifun
tion 
orresponding to La-

grangian, we get a version of Antosiewi
z-Cellina theorem. Moreover, the
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multifun
tion in this version of the theorem does not need to be upper semi-


ontinuous in the sense of Hausdor� distan
e. For instan
e we 
an take L
from Remark 4.3.

Theorem 4.5. If L : Rm × Rl → (−∞,+∞] satis�es type 
onditions (L1)�

(L5), then there exists a sequen
e of fun
tions Ln : Rm × Rl → (−∞,+∞]
su
h that

1. Q(x) = Epi(L(x, ·)), Qn(x) = Epi(Ln(x, ·)),

2. Qn(x) are 
onvex and 
losed,

3. Q(x) ⊂ Qn+1 ⊂ Qn(x), Q(x) =
∞
⋂

n=1
Qn(x),

4. the map Qn is lo
ally Lips
hitz with respe
t to Hausdor� distan
e,

5. the Kuratowski limit of sequen
e Qn(x) equals Q(x) for ea
h x ∈ Rm
.

P roof. Let H be a Hamiltonian asso
iated with Lagrangian L satisfying

type 
onditions (H1)�(H4). Then H ful�lls the assumptions of Theorem

4.4, so there exists a sequen
e of Hamiltonians Hn satisfying the 
on
lusion

of Theorem 4.4. The sequen
e of Lagrangians Ln asso
iated with the se-

quen
e of Hamiltonians Hn ful�lls type 
onditions (L1)�(L4) and it implies

1. Moreover, from Corollary 3.2 we get Ln ր L and e-limLn = L, whi
h
implies 2 and 4. However, 3 is a 
onsequen
e of the property presented in

preliminaries.

Corollary 4.6. Let H : [0, T ]× Rl ×Rl → R satisfy (H1)�(H4). Then there

exists a family of fun
tions {Hn : [0, T ] × Rl × Rl → R}n∈N su
h that:

1. Hn ց H,

2. Hn satis�es 
onditions (HL),

3. |Hn(t, x, p)| ≤ 2C(1 + T )(1 + |x|)(|p| + 1),

4. Hn(t, x, p) is 
onvex with respe
t to p for all n ∈ N, t ∈ [0, T ], x ∈ Rl
,

5. Hn is lo
ally Lips
hitz for every n ∈ N.

P roof. Let H(t,x,p)=H(0,x,p) for t < 0 and H(t, x, p) = H(T, x, p) for

t > T . Sin
e |H(t, x, p)| ≤ C(1 + |x|)(|p| + 1) ≤ C(1 + |(t, x)|)(|p| + 1), the
assumptions of Theorem 4.4 are satis�ed. There exists a family of fun
tions

Hn : R × Rl × Rl → R, the one whi
h ful�lls all the 
onditions of the


on
lusion of the above theorem on the set [0, T ] × Rl × Rl
. We show 3 and

2, the rest is obvious.
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The proof of 3: |Hn(t, x, p)| ≤ 2C(1+|(t, x)|)(|p|+1) ≤ 2C(1+T+|x|)(|p|+1)
≤ 2C(1 + T )(1 + |x|)(|p| + 1).

To proof 2: Let us �x n ∈ N and R > 0. Then from Theorem 4.4

and 
ompa
tness of the set [0, T ] × BR, we obtain �nite family of open

sets {Ui}
τ
i=1 
overing a set [0, T ] × BR and numbers {Ki}

τ
i=1 su
h that for

i ∈ {1 . . . τ} the following inequality holds:

|Hn(t, x, p) −Hn(t′, x′, p)| ≤ Ki(|t− t′| + |x− x′|)(|p| + 1)

for (t, x), (t′, x′) ∈ Ui, p ∈ Rl
. Next we 
hoose a Lebesgue number λ > 0 of


overing {Ui}
τ
i=1. Let us put K := maxi∈{1,...τ}{Ki, 2

2C(1+R)(1+T )
λ }. Then,

for (t, x), (t′, x′) ∈ [0, T ] × BR, we obtain: If |(t, x) − (t′, x′)| < λ, then
∃i∈{1,...,τ} for whi
h (t, x), (t′, x′) ∈ Ui, hen
e

|Hn(t, x, p) −Hn(t′, x′, p)| ≤ K(|t− t′| + |x− x′|)(|p| + 1) for p ∈ Rl.

If |(t, x) − (t′, x′)| ≥ λ, then from proof 3

|Hn(t, x, p) −Hn(t′, x′, p)| ≤ |Hn(t, x, p)| + |Hn(t′, x′, p)|

≤ 2
2C(1 + T )(1 +R)

λ
λ(|p| + 1)

≤ K(|t− t′| + |x− x′|)(|p| + 1) for p ∈ Rl.

5. Value fun
tion and us
 Hamiltonian

In this se
tion we provide examples of value fun
tions in Bolza problem that

are not bilateral, vis
osity and 
lassi
al solutions and show how to approxi-

mate these fun
tions in the 
ase of upper semi
ontinuous Hamiltonian.

5.1. Lo
ally Lips
hitz 
ontinuity of the value fun
tion

We show that if terminal 
ost is lo
ally Lips
hitz, then the value fun
tion

is also lo
ally Lips
hitz. We also emphasize in the sequel that we do not

assume that Lagrangian L(t, x, ·) is 
onvex.
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Theorem 5.1. Suppose that Lagrangian L : [0, T ]×Rl ×Rl → R∪{+∞} is

proper with respe
t to the last variable and satis�es (L1), (L3) and (L4). Fix

R > 0. Let Q(t, x) = Epi(L(t, x, ·)) be Lips
hitz with respe
t to Hausdor�

distan
e on [0, T ]×B(1+R+TC)e2TC with a 
onstant k > 0. If (x, u) : [τ, σ] →

Rl ×R is absolutely 
ontinuous fun
tion su
h that [τ, σ] ⊂ [0, T ], |x(τ)| < R,
(ẋ(t), u̇(t)) ∈ Q(t, x(t)), then for |xτ | < R, uτ ∈ R there exists an absolutely


ontinuous fun
tion (x, u) : [τ, σ] → Rl × R su
h that x(τ) = xτ and u(τ) =
uτ . Moreover,

1. (ẋ(t), u̇(t)) ∈ Q(t, x(t)),

2. |ẋ(t) − ẋ(t)| + |u̇(t) − u̇(t)| ≤ (|xτ − x(τ)|)4kekT ,

3. |x(t) − x(t)| + |u(t) − u(t)| ≤ (|xτ − x(τ)| + |uτ − u(τ)|)2ekT .

Theorem 5.1 is a version of Filippov theorem, whi
h 
an be obtained by little


hange in the proof of this theorem: we take into 
onsideration the fa
t that

the multifun
tion 
omes from Lagrangian with super linear growth.

Lemma 5.2. Suppose that Lagrangian L : [0, T ] × Rl × Rl → R ∪ {+∞}
is proper with respe
t to the last variable and satis�es (L1), (L3) and (L4).

Moreover, let Q(t, x) = Epi(L(t, x, ·)) be lo
ally Lips
hitz with respe
t to

Hausdor� distan
e. For u0 ∈ R, t0 ∈ [0, T ) and (f0, η0) ∈ Q(t0, x0) there

exists a C1
-
lass fun
tion (x, u) : [t0, T ] → Rl × R su
h that (x, u)(t0) =

(x0, u0), (ẋ, u̇)(t+0 ) = (f0, η0) and (ẋ(t), u̇(t)) ∈ Q(t, x(t)).

Lemma 5.2 is a version of Proposition 3.14 from the paper of Plaska
z and

Quin
ampoix [12℄, whi
h 
an be obtained by taking the multifun
tion that


omes from Lagrangian with super linear growth.

Remark 5.3. From Lemma 5.2 we obtain the following if Lagrangian satis-

�es the assumptions of Lemma 5.2 and the terminal 
ost is �nite, then the

value fun
tion is also �nite.

Theorem 5.4. Suppose that Lagrangian L : [0, T ]×Rl ×Rl → R∪{+∞} is

proper with respe
t to the last variable and satis�es (L1), (L3) and (L4). Let

g : Rl → R be lo
ally Lips
hitz and Q(t, x) = Epi(L(t, x, ·)) be lo
ally Lips-


hitz with respe
t to Hausdor� distan
e, then the value fun
tion V asso
iated

with L, g is lo
ally Lips
hitz.
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P roof. From Lemma 5.2 we obtain a C1
-
lass fun
tion (z, v) : [0, T ] →

Rl × R su
h that v̇(t) ≥ L(t, z(t), ż(t)). Let us take non-negative number

r su
h that |z(t)| < r and |v̇(t)| < r when t ∈ [0, T ]. Put R := (1 +
r + TC)eTC

. Let k1 be the Lips
hitz 
onstant for the multifun
tion Q(·, ·)
on [0, T ] × B(1+R+TC)e2TC and k2 the Lips
hitz 
onstant for g(·) on BR.

To prove Theorem 5.4, it is enough to show that V (t1, x1) − V (t2, x2) ≤
k(|t1 − t2| + |x1 − x2|) for t1, t2 ∈ [0, T ] and x1, x2 ∈ Br, where k = (k2 +
1)(C(1 + R) + 1)2ek1T + max{C(1 + R), (8k1e

k1T + 1)R}. We show this

inequality in two steps.

Step 1. The following inequality is true V (t1, x1) − V (t1, x2) ≤ |x1 − x2|
(k2 + 1)2ek1T

for t1 ∈ [0, T ] and x1, x2 ∈ Br. Indeed, �x t1 ∈ [0, T ), x1, x2 ∈
Br and ε > 0. Let x : [t1, T ] → Rl

be absolutely 
ontinuous su
h that

x(t1) = x2 and

ε+ V (t1, x2) ≥ g(x(T )) +

∫ T

t1

L(t, x(t), ẋ(t))dt.

Let us take an absolutely 
ontinuous fun
tion (x, u) : [t1, T ] → Rl × R su
h

that (x, u)(t1) = (x2, 0) and u̇(t) = L(t, x(t), ẋ(t)). From Theorem 5.1 there

exists an absolutely 
ontinuous fun
tion (x, u) : [t1, T ] → Rl × R su
h that

(x, u)(t1) = (x1, 0) and u̇(t) ≥ L(t, x(t), ẋ(t)), moreover

|x(T ) − x(T )| + |u(T ) − u(T )| ≤ |x1 − x2|2e
k1T .

Assumption (L4) implies |ẋ(t)| ≤ C(1+|x(t)|). Using Gronwall inequality, we
obtain |x(t)| ≤ (|x1| + TC)eTC < R. Analogously, we show that |x(t)| < R.
Then g(x(T )) − g(x(T )) ≤ k2|x(T ) − x(T )|. Let us prove the inequality

V (t1, x1) − V (t1, x2)

≤ g(x(T )) +

∫ T

t1

L(t, x(t), ẋ(t))dt − g(x(T )) −

∫ T

t1

L(t, x(t), ẋ(t))dt + ε

= g(x(T )) − g(x(T )) +

∫ T

t1

L(t, x(t), ẋ(t))dt −

∫ T

t1

L(t, x(t), ẋ(t))dt + ε

≤ k2|x(T ) − x(T )| + u(T ) − u(T ) + ε

≤ k2|x1 − x2|2e
k1T + |x1 − x2|2e

k1T + ε = |x1 − x2|(k2 + 1)2ek1T + ε.
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If t1 = T , then V (t1, x1) − V (t1, x2) = g(x1) − g(x2) ≤ k2|x1 − x2|. From
arbitrariness of ε > 0 the proof of Step 1 is 
omplete.

Step 2. The following inequality is true V (t1, x2) − V (t2, x2) ≤ |t1 − t2|
((k2 + 1)2ek1TC(1 +R) + max{C(1 +R), (8k1e

k1T + 1)R}) for t1, t2 ∈ [0, T ]
and x2 ∈ Br.

Case 1. Let us �x t2 < t1 < T , x2 ∈ Br and ε > 0. Let x : [t2, T ] → Rl

be absolutely 
ontinuous su
h that x(t2) = x2 and

ε+ V (t2, x2) ≥ g(x(T )) +

∫ T

t2

L(t, x(t), ẋ(t))dt.

Condition (L4) implies |ẋ(t)| ≤ C(1 + |x(t)|). Using Gronwall inequality,

we obtain |x(t)| ≤ (|x2| + TC)eTC < R and |ẋ(t)| ≤ C(1 + R). So x(·)
is Lips
hitz with the 
onstant C(1 + R). Condition (L3) implies −C(1 +
R) ≤ −C(1 + |x(t)|) ≤ L(t, x(t), ẋ(t)). Let us take an absolutely 
ontinuous

fun
tion (x, u) : [t1, T ] → Rl ×R su
h that (x, u)(t1) = (x(t1), 0) and u̇(t) =
L(t, x(t), ẋ(t)). From Theorem 5.1 there exists an absolutely 
ontinuous

fun
tion (x, u) : [t1, T ] → Rl × R su
h that (x, u)(t1) = (x2, 0) and u̇(t) ≥
L(t, x(t), ẋ(t)). Moreover,

|x(T ) − x(T )| + |u(T ) − u(T )| ≤ |x(t1) − x2|2e
k1T

= |x(t1) − x(t2)|2e
k1T ≤ |t1 − t2|2e

k1TC(1 +R).

Then |x(T )| < R and |x(T )| ≤ C(|x2|+TC)eTC < R so g(x(T ))−g(x(T )) ≤
k2|x(T ) − x(T )|. Let us prove the inequality

V (t1, x2) − V (t2, x2)

≤ g(x(T )) +

∫ T

t1

L(t, x(t), ẋ(t))dt − g(x(T )) −

∫ T

t2

L(t, x(t), ẋ(t))dt + ε

= g(x(T )) − g(x(T )) +

∫ T

t1

L(t, x(t), ẋ(t))dt −

∫ T

t2

L(t, x(t), ẋ(t))dt + ε

= g(x(T )) − g(x(T )) +

∫ T

t1

L(t, x(t), ẋ(t))dt
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−

∫ T

t1

L(t, x(t), ẋ(t))dt −

∫ t1

t2

L(t, x(t), ẋ(t))dt + ε

≤ k2|x(T ) − x(T )| + u(T ) − u(T ) + |t1 − t2|C(1 +R) + ε

≤ k2|t1− t2|2e
k1TC(1 +R) + |t1− t2|2e

k1TC(1 +R) + |t1− t2|C(1 +R) + ε

= |t1 − t2|((k2 + 1)2ek1TC(1 +R) + C(1 +R)) + ε.

Similarily, we show the inequality when t1 = T . From arbitrariness of ε > 0,
the proof of Case 1 is 
omplete.

Case 2. Let us �x t1 < t2 < T , x2 ∈ Br and ε > 0. For a de�ned

C1
-
lass fun
tion (z, v) : [0, t2] → Rl × R for whi
h (z, v)(t2) = (z(t2), v(t2))

and v̇(t) ≥ L(t, z(t), ż(t)) we mat
h from Theorem 5.1 (ba
k in time) an

absolutely 
ontinuous fun
tion (z, v) : [0, t2] → Rl ×R su
h that (z, u)(t2) =
(x2, v(t2)) and v̇(t) ≥ L(t, z(t), ż(t)). Moreover, |v̇(t) − v̇(t)| ≤ |z(t2) −
x2|4k1e

k1T
. Then |v̇(t)| ≤ |z(t2) − x2|4k1e

k1T + |v̇(t)| ≤ 8Rk1e
k1T + R. So

L(t, z(t), ż(t)) ≤ (8k1e
k1T + 1)R. Condition (L4) implies |ż(t)| ≤ C(1 +

|z(t)|). Using Gronwall inequality (ba
k in time), we obtain |z(t)| ≤ (|x2| +
TC)eTC < R and |ż(t)| ≤ C(1 + R). So z(·) is Lips
hitz with the 
onstant

C(1+R). Let x : [t2, T ] → Rl
be absolutely 
ontinuous su
h that x(t2) = x2

and

ε+ V (t2, x2) ≥ g(x(T )) +

∫ T

t2

L(t, x(t), ẋ(t))dt.

Let us take an absolutely 
ontinuous fun
tion (y, u) : [t1, T ] → Rl × R su
h

that (y, u)(t1) = (z(t1), 0) and u̇(t) = L(t, y(t), ẏ(t)), where y(t) equals x(t)
on [t2, T ] and z(t) on [t1, t2]. From Theorem 5.1 there exists an absolutely


ontinuous fun
tion (y, u) : [t1, T ] → Rl × R su
h that (y, u)(t1) = (x2, 0)
and u̇(t) ≥ L(t, y(t), ẏ(t)). Moreover,

|y(T ) − y(T )| + |u(T ) − u(T )| ≤ |z(t1) − x2|2e
k1T

= |z(t1) − z(t2)|2e
k1T ≤ |t1 − t2|2e

k1TC(1 +R).

Then |y(T )| ≤ (|x2| + TC)eTC < R and |y(T )| = |x(T )| ≤ (|x2| + TC)eTC

< R so g(y(T )) − g(y(T )) ≤ k2|y(T ) − y(T )|. Let us prove the inequality
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V (t1, x2) − V (t2, x2)

≤ g(y(T )) +

∫ T

t1

L(t, y(t), ẏ(t))dt − g(x(T )) −

∫ T

t2

L(t, x(t), ẋ(t))dt + ε

= g(y(T )) − g(y(T )) +

∫ T

t1

L(t, y(t), ẏ(t))dt −

∫ T

t2

L(t, y(t), ẏ(t))dt + ε

= g(y(T )) − g(y(T )) +

∫ T

t1

L(t, y(t), ẏ(t))dt

−

∫ T

t1

L(t, y(t), ẏ(t))dt +

∫ t2

t1

L(t, y(t), ẏ(t))dt + ε

≤ k2|y(T ) − y(T )| + u(T ) − u(T ) +

∫ t2

t1

L(t, z(t), ż(t))dt + ε

≤ k2|t1 − t2|2e
k1TC(1 +R) + |t1 − t2|2e

k1TC(1 +R)

+ |t2 − t1|(8k1e
k1T + 1)R + ε

= |t1 − t2|((k2 + 1)2ek1TC(1 +R) + (8k1e
k1T + 1)R) + ε.

Similarly, we show the inequality when t2 = T . From arbitrariness of ε > 0,
the proof of Case 2 is 
omplete.

From the properties enlisted in the Preliminaries and Theorem 5.4, we ob-

tain:

Corollary 5.5. Suppose that H : [0, T ] × Rl × Rl → R satis�es (H1)�(H3),

(HL) and g : Rl → R is a lo
ally Lips
hitz fun
tion. Then the value fun
tion

V , asso
iated with L and g (where L is dual to H), is lo
ally Lips
hitz.

5.2. Bilateral and vis
osity solutions

For H : [0, T ]×Rl ×Rl → R we give a de�nition of bilateral solutions of the

equation:

−Ut +H(t, x,−Ux) = 0,(7)

whi
h was introdu
ed by Barron, Jensen in [3℄ (
alling them upper semi
on-

tinuous solutions) and Frankowska in [9℄ (
alling them lower semi
ontinuous

solutions). The name 'bilateral solutions' 
omes from [2℄.
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De�nition 5.6. We say that a fun
tion U ∈ LSC([0, T ] × Rl) is a bilateral

solution of the equation (7), if for all (t, x) ∈ Dom(U), t ∈ (0, T ), the
following inequality holds

−pt +H(t, x,−px) = 0, ∀(pt, px) ∈ D−U(t, x).

The following de�nition of the vis
osity solutions 
omes from Crandall and

Lions:

De�nition 5.7. We say that a fun
tion U ∈ USC([0, T ] × Rl) is a subsolu-

tion of the equation (7), if for all (t, x) ∈ Dom(U), t ∈ (0, T ), the following
inequality holds

−pt +H(t, x,−px) ≤ 0, ∀(pt, px) ∈ D+U(t, x).

Similarly, we say that U ∈ LSC([0, T ] × Rl) is a supersolution, if for every

(t, x) ∈ Dom(U), t ∈ (0, T ) the following inequality is satis�ed

−pt +H(t, x,−px) ≥ 0, ∀(pt, px) ∈ D−U(t, x).

If U ∈ C([0, T ] × Rl) is sub/super-solution, then U is a vis
osity solution of

the equation (7).

De�nition 5.8. We say that U satis�es the boundary 
ondition with g if

U(T, x) = g(x) for every x ∈ Rl
.

Theorem 5.9. Suppose that H : [0, T ] × Rl × Rl → R satis�es (H1)�(H3),

(HL) and g : Rl → R ∪ {+∞} is a lower semi
ontinuous fun
tion. Then

the value fun
tion V , asso
iated with L and g (where L is dual to H), is a

bilateral solution of the equation (7).

Theorem 5.9 
an be obtained with a few 
hanges of the results in the paper

of Plaska
z and Quin
ampoix [12℄. This modi�
ation is ne
essary be
ause

we weaken the lower boundary of Lagrangian and strengthen the assumption

about super linear growth.

Theorem 5.10 (Vis
osity solutions). Let U1, U2 ∈ C([0, T ] × Rl) and

U1(T, x) = U2(T, x) for every x ∈ Rl
. Let U1 and U2 be the vis
osity so-

lution of

−Ut +H(t, x,−Ux) = 0 in (0, T ) × Rl,
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where H ∈ C([0, T ] × Rl × Rl) satis�es

|H(t, x, p) −H(t, x, p′)| ≤ K(1 + |x|)|p − p′|

for all t ∈ [0, T ] and x, p, p′ ∈ Rl
and

|H(t, x, p) −H(t′, x′, p)| ≤ KR(|t− t′| + |x− x′|)(1 + |p|)

for all p ∈ Rl
, t, t′ ∈ [0, T ], x, x′ ∈ BR, R > 0. Then U1 = U2 in [0, T ] × Rl

.

Theorem 5.10 
an be found in [2℄, page 182.

Remark 5.11. If H : [0, T ] × Rl × Rl → R satis�es (H1)�(H4), then from

Lemma 4.1 we obtain |H(t, x, p) − H(t, x, p′)| ≤ 3C(1 + T )(1 + |x|)|p − p′|
for all t ∈ [0, T ] and x, p, p′ ∈ Rl

. So, if Hamiltonian H satis�es (H1)�(H4),

(HL) and U is 
ontinuous, then from the results (in lo
al version) of Barron-

Jensen (see Theorem 2.3 in [3℄), we dedu
e that U is a vis
osity solution if

and only if U is a bilateral solution.

From Corollary 5.5, Theorems 5.9, 5.10, Remark 5.11 we obtain the 
orollary:

Corollary 5.12. Suppose that H : [0, T ]×Rl ×Rl → R satis�es (H1)�(H4),

(HL) and g : Rl → R is a lo
ally Lips
hitz fun
tion. Then in the 
lass

of lo
ally Lips
hitz fun
tions satisfying boundary 
ondition with g the value

fun
tion V , asso
iated with L and g (where L is dual to H), is the unique

bilateral (equivalently vis
osity) solution of the equation (7).

5.3. Examples

Example 5.13. Let V (t, x) be the value fun
tion in the Meyer problem

given by the di�erential in
lusion

ẋ(t) ∈ F (x(t)),

where F : R ⊸ R is given by

F (x) =







1 ; x > 0
[−1, 1] ; x = 0
−1 ; x < 0.
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For the terminal 
ost g(x) = x the value fun
tion V : [0, T ] × R → R,
V (t, x) = inf{g(x(T )) : x(·) ∈ SF (t, x)} 
an be easily 
al
ulated as

V (t, x) =

{

x+ (T − t) ; x > 0
x− (T − t) ; x ≤ 0.

Let us observe that at points (t, x) = (t, 0), t ∈ (0, T ) subdi�erentialD−V (t, x)

onsists of (1, px), where px ≥ 1 and the HamiltonianH(t, x, p) = supf∈F (x) f ·
p is given by

H(t, x, p) =







p ; x > 0
|p| ; x = 0
−p ; x < 0.

The above Hamiltonian satis�es (H1)�(H4). But the value fun
tion V is not

a bilateral solution of the HJB equation be
ause −1 +H(t, 0,−px) 6= 0.

Example 5.14. A Hamiltonian H : [0, T ] × R × R 7→ R is given by the

formula

H(t, x, p) =

{

p+ 1 ; x ≥ 0
p− 1 ; x < 0.

The above Hamiltonian satis�es (H1)�(H4). Lagrangian L : [0, T ]×R×R 7→
[−1,+∞] of this Hamiltonian is given by the formula

L(t, x, f) =







−1 ; f = 1, x ≥ 0
+∞ ; f 6= 1
1 ; f = 1, x < 0.

For the terminal 
ost g(x) equalled 0 for x < 0, and x for x ≥ 0 the value

fun
tion V : [0, T ] × R → R 
an be easily 
al
ulated as

V (t, x) =

{

|x| ; t− x ≤ T
T − t ; t− x > T.

For the terminal 
ost g(x) equalled +∞ for x < 0, and x for x ≥ 0 the value

fun
tion V : [0, T ] × R → R 
an be easily 
al
ulated as

V (t, x) =

{

|x| ; t− x ≤ T
+∞ ; t− x > T.
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Let us observe in both 
ases that at points (t, x) = (t, 0), t ∈ (0, T ) sub-

di�erential D−V (t, x) 
onsists of (0, px) where px ∈ [−1, 1]. So the value

fun
tion V is not a bilateral solution of the HJB equation be
ause −0+
H(t, 0,−px) 6= 0.

Example 5.15. A Hamiltonian H : [0, T ] × R × R 7→ R is given by the

formula

H(t, x, p) =

{

p+ 1 ; x ≤ 0
p− 1 ; x > 0.

The above Hamiltonian satis�es (H1)�(H4). Lagrangian L : [0, T ]×R×R 7→
[−1,+∞] of this Hamiltonian is given by the formula

L(t, x, f) =







−1 ; f = 1, x ≤ 0
+∞ ; f 6= 1
1 ; f = 1, x > 0.

For the terminal 
ost g(x) = −|x| the value fun
tion V : [0, T ] × R → R

an be easily 
al
ulated as V (t, x) = −|x|. Let us observe that at points

(t, x) = (t, 0), t ∈ (0, T ) subdi�erential D+V (t, x) 
onsists of (0, px), where
px ∈ [−1, 1]. So the value fun
tion V is not a vis
osity solution of the HJB

equation be
ause −0 +H(t, 0,−px) � 0.

Example 5.16. A Hamiltonian H : [0, T ] × R × R 7→ R is given by the

formula

H(t, x, p) =











−1 ; |p| ≤ 1
|t−x| , t 6= x

T
(

|p| − 1
|t−x|

)

− 1 ; |p| > 1
|t−x| , t 6= x

0 ; t = x.

The above Hamiltonian satis�es (H1)�(H4). Lagrangian L : [0, T ]×R×R 7→
[0,+∞] of this Hamiltonian is given by the formula

L(t, x, f) =



















+∞ ; f /∈ [−T, T ], t 6= x
1

|t−x| |f | + 1 ; f ∈ [−T, T ], t 6= x

0 ; f = 0, t = x

+∞ ; f 6= 0, t = x.

For the terminal 
ost g ≡ 0 the value fun
tion V : [0, T ] × R → R 
an be

easily 
al
ulated as a smooth fun
tion V (t, x) = T − t. Indeed, if we put
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x(·) ≡ x, then L(τ, x(τ), ẋ(τ)) = 1 almost surely. Hen
e, V (t, x) ≤ T − t.
Let x(·) be an absolutely 
ontinuous fun
tion, then the Lebesgue measure

of a set A := {τ ∈ [t, T ]; x(τ) = τ, ẋ(τ) = 0} equals zero. Assume

by 
ontradi
tion that the Lebesgue measure of A is positive. Then from

Lebesgue theorem about the point of density of the set A there exists a point

τ0 ∈ A and a sequen
e τn ∈ A su
h that τn 6= τ0 and τn → τ0. Therefore

limn((x(τn)−x(τ0))/(τn−τ0)) = 1 and ẋ(τ0) = 0, so we have a 
ontradi
tion.
Hen
e, for every absolutely 
ontinuous fun
tion the following inequality holds

almost surely L(τ, x(τ), ẋ(τ)) ≥ 1. Finally we see that V (t, x) ≥ T − t. Let
us observe that the smooth value fun
tion V at the point (t, t), t ∈ (0, T )
is not a 
lassi
al solution (in parti
ular, it 
an be neither a vis
osity nor a

bilateral solution) of the HJB equation be
ause −(−1) +H(t, t, 0) 6= 0.

Remark 5.17. Examples 5.13, 5.14, 5.15, 5.16 show that the value fun
-

tion 
an be neither the bilateral solution, nor the vis
osity solution nor the


lassi
al solution. But in examples the value fun
tions satisfy the inequality

−Vt +H(t, x,−Vx) ≥ 0. It is not 
asual: see Theorem 5.20 at (ii).

5.4. Approximation of the value fun
tion

From Examples 5.13, 5.14, 5.15, 5.16 we know that the value fun
tion of

upper semi
ontinuous Hamiltonian does not have to be its bilateral, vis-


osity and 
lassi
al solution. One observes that this value fun
tion 
an be

approximated by value fun
tions that are, in the 
lass of lo
ally Lips
hitz

fun
tions satisfying boundary 
ondition, unique bilateral (vis
osity) solu-

tions of 
orresponding Hamilton-Ja
obi-Bellman equations. The following

theorem implies that this is a 
onsequen
e of Corollaries 3.5, 4.6 and 5.12.

Theorem 5.18. Suppose that Hamiltonian H : [0, T ]×R×R 7→ R satisfying


onditions (H1)�(H4) and gn : Rl → R is lo
ally Lips
hitz and g : Rl →
R∪{+∞} is a lower semi
ontinuous fun
tion, moreover gn ր g. If V is the

value fun
tion asso
iated with L and g (where L is dual to H), then there

exists a sequen
e of fun
tions Vn : [0, T ]×R → R and Hn : [0, T ]×R×R 7→ R
su
h that:

(i) Hn satis�es assumptions (H1)�(H4), (HL),

(ii) Vn is the value fun
tion asso
iated with Ln and gn (where Ln are dual

to Hn),
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(iii) in the 
lass of lo
ally Lips
hitz fun
tions satisfying boundary 
ondi-

tion with gn the value fun
tion Vn is the unique bilateral (equivalently
vis
osity) solution of equation −Ut +Hn(t, x,−Ux) = 0.

(iv) Vn ր V (e-lim Vn = V ) and Hn ց H (h-limHn = H).

We show that in the 
ase of 
ontinuous Hamiltonian the value fun
tion is its

bilateral solution. Let us noti
e that generally Theorem 5.9 
an not be used

in the 
ase of 
ontinuous Hamiltonians be
ause they are not regular enough

(see Remark 4.3).

Proposition 5.19 (Barron and Jensen). Let Hn,H : [0, T ] × Rl × Rl → R
and assume that Hn are 
ontinuous. Then:

(i) If Un is the bilateral (vis
osity) solution of equation −Ut+Hn(t, x,−Ux)
= 0 for every n ∈ N, e-limUn = U (Un ⇒ U), Hn ⇒ H uniformly on


ompa
t set, then U is the bilateral (vis
osity) solution of equality (7).

(ii) If Un is the supersolution of −Ut +Hn(t, x,−Ux) = 0 for every n ∈ N,

e-limUn = U and h-limHn = H, then U is the supersolution of equality

(7).

Proposition 5.19 
omes from the paper of Barron and Jensen (Proposition

3.2, [3℄). A 
onsequen
e of Corollaries 3.2, 3.5, 4.6, Theorem 5.9 and Propo-

sition 5.19 is the following:

Theorem 5.20. Suppose that H : [0, T ] × Rl × Rl → R satis�es (H1)�(H4)

and g : Rl → R ∪ {+∞} is a lower semi
ontinuous fun
tion. Then:

(i) If H is a 
ontinuous fun
tion, then the value fun
tion V , asso
iated with

L and g (where L is dual to H), is the bilateral solution of equation (7).

(ii) If H is upper semi
ontinuous fun
tion, then the value fun
tion V ,

asso
iated with L and g (where L is dual to H), is the supersolution of

equation (7).

6. Definition of approximate solutions of HJB equation

For upper semi
ontinuous Hamiltonian H : [0, T ] × Rl × Rl → R we give a

de�nition of an approximate solution of equation (7) −Ut+H(t, x,−Ux) = 0.
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De�nition 6.1. We say that the fun
tion U : [0, T ] × Rl → R ∪ {+∞} is

an approximate solution of equation (7) if there exist sequen
es Un : [0, T ]×
Rl → R and Hn : [0, T ] × Rl × Rl → R su
h that

1. Un is lo
ally Lips
hitz and Un ր U ,

2. Hn satis�es assumptions (H1)�(H4), (HL), and Hn ց H,

3. Un is a bilateral (equivalently vis
osity) solution of

−Ut +Hn(t, x,−Ux) = 0.

Let us noti
e that approximate solutions 
an be interpreted as limits of some

bilateral solutions (or vis
osity solutions see Remark 5.11). Moreover, Ex-

ample 5.16 implies that the approximate solution 
an be neither the bilateral

solution nor the vis
osity solution nor the 
lassi
al solution.

In Examples 5.13 and 5.14 one 
an see that the value fun
tion is not the

bilateral solution only at points (t, 0) of non-
ontinuity of Hamiltonian. In

Examples 5.15 the value fun
tion is not the vis
osity solution only at points

(t, 0) of non-
ontinuity of Hamiltonian. In Example 5.16 the value fun
tion is

the 
lassi
al solution (in parti
ular, it is the vis
osity and the bilateral solu-

tion) beyond points (t, t) of non-
ontinuity of Hamiltonian. Using arguments

as in the proof of Proposition 5.19 we 
an dedu
e the general proposition

whi
h says when the approximate solution is the bilateral or the vis
osity or

the 
lassi
al solution at parti
ular points.

Proposition 6.2 (Compatibility). The approximate solution U of equation

(7) is at a point (t, x), where t ∈ (0, T ),

(i) the bilateral solution of equation (7) if H is 
ontinuous on a set {t} ×
{x} ×D−U(t, x),

(ii) the vis
osity solution of equation (7) if U is 
ontinuous and H is 
on-

tinuous on a set {t} × {x} ×D+U(t, x),

(iii) the 
lassi
al solution of equation (7) if U is di�erentiable and H is


ontinuous at a point (t, x,▽U(t, x)).

Furthermore, every approximate solution is the supersolution.

In parti
ular, if Hamiltonian is 
ontinuous on the whole domain, then the

approximate solution is the bilateral solution and the vis
osity solution if U
is 
ontinuous and the 
lassi
al solution if U is di�erentiable. Summarizing,

the regularity of Hamiltonian mainly de
ides when the approximate solution

is the bilateral or the vis
osity or the 
lassi
al solution.
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Theorem 6.3 (Existen
e and uniqueness). Let H : [0, T ] × Rl × Rl → R
satisfy (H1)�(H4) and g : Rl → R∪{+∞} be a �nite or lower bounded lower

semi
ontinuous fun
tion. Then the value fun
tion V , asso
iated with L and

g (where L is dual to H), is the unique approximate solution of equation (7)

in the 
lass fun
tions satisfying boundary 
ondition with g.

P roof. Due to Theorem 5.18 we 
on
lude that the value fun
tion V is

the approximate solution satisfying the boundary 
ondition with g be
ause

assumptions from Theorem 6.3 allow us to in
reasingly approximate the

fun
tion g by lo
ally Lips
hitz fun
tions. However, the uniqueness 
an be

obtained in the following way: let U be the approximate solution su
h that

U(T, x) = g(x), then there exist sequen
es Un and Hn su
h that Un ր U
and Hn ց H. From Corollary 5.12 we have Un = Vn and from Corollary 3.5

Vn ր V . Sin
e Un ր V and Un ր U , U = V .

Theoreti
al results that are obtained in this paper give the method of deter-

mining the optimal traje
tory in Bolza problem, in whi
h Lagrangian satis�es

(L1)�(L5) and a lower semi
ontinuous terminal 
ost fun
tion is �nite or lower

bounded. The pro
edure is: we determine dual Hamiltonian to Lagrangian,

next we approximate Hamiltonian and the terminal 
ost fun
tion using su
h

regular fun
tions for whi
h �nding optimal traje
tories of value fun
tions

is possible. From Remark 3.4 we 
on
lude that the a

umulation point of

optimal traje
tories is the optimal traje
tory in Bolza problem.
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