ArticleOriginal scientific text

Title

Quadratic integral equations in reflexive Banach space

Authors 1

Affiliations

  1. Faculty of Sciences, Taibah University, Yanbu, Saudi Arabia, and, Department of Mathematics, Faculty of Sciences, Alexandria University, Egypt

Abstract

This paper is devoted to proving the existence of weak solutions to some quadratic integral equations of fractional type in a reflexive Banach space relative to the weak topology. A special case will be considered.

Keywords

Pettis integral, fractional calculus, fixed point theorem, quadratic integral equation

Bibliography

  1. O. Arino, S. Gautier and T. Penot, A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkc. Ekvac. 27 (1984), 273-279.
  2. I.K. Argyros, Quadratic quations and applications to Chandrasekher's and related equations, Bull. Austral. Math. Soc. 32 (1985), 275-292. doi:10.1017/S0004972700009953
  3. J.M. Ball, Weak continuity properties of mapping and semi-groups, Proc. Royal Soc. Edinbourgh Sect. (A) 72 (1973-1974), 275-280.
  4. J. Banaś and A. Martinon, Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. Appl. 47 (2004), 271-279. doi:10.1016/S0898-1221(04)90024-7
  5. J. Banaś, M. Lecko and W.G. El-Sayed, Existence theorems of some quadratic integral equations, J. Math. Anal. Appl. 222 (1998), 276-285. doi:10.1006/jmaa.1998.5941
  6. J. Banaś and B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl. 322 (2007), 1370-1378.
  7. L.W. Busbridge, The Mathematics of Radiative Transfer, Cambridge univesrity press, Cambridge, MA, 1960.
  8. S. Chandrasekher, Radiative Transfer, Dver, New York, 1960.
  9. M. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (1) (2005), 112-119.
  10. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.
  11. M.M. El-Borai, W.G. El-Sayed and M.I. Abbas, Monotonic solutions of a class of quadratic singular integral equation of Volterra type, Internat. J. Contemp. Math. Sci. 2 (2) (2007), 89-102.
  12. R.F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86. doi:10.1090/S0002-9939-1981-0603606-8
  13. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  14. S. Hu, M. Khavanin and W. Zhuang, Integral equations arising in the kinetic of Gases, Amer. Math. Soc. Colloq. Publ. 31 Appl. Analysis 25 (1989), 261-266.
  15. K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York, 1993.
  16. I. Podlubny, Fractional differential equations, Academic Press, San Diego, New York, London, 1999.
  17. A.R. Mitchell and Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, in: Nonlinear Equations in Abstract Spaces, V. Lakshmikantham (ed.) (1978), 387-404.
  18. D. O'Regan, Fixed point theory for weakly sequentially continuous mapping, Math. Comput. Modeling 27 (5) (1998), 1-14.
  19. B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.
  20. H.A.H. Salem, A.M.A. El-Sayed and O.L. Moustafa, A note on the fractional calculus in Banach spaces, Studia Sci. Math. Hungar. 42 (2) (2005), 115-113.
  21. S.G. Samko, A.A. Kilbas and O.L. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publisher, 1993.
  22. A. Szep, Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Studia Sci. Math. Hungar. 6 (1971), 197-203.
Pages:
61-69
Main language of publication
English
Received
2009-01-05
Published
2010
Exact and natural sciences