ArticleOriginal scientific text

Title

Existence results for ϕ-Laplacian Dirichlet BVP of differential inclusions with application to control theory

Authors 1, 2

Affiliations

  1. Department of Mathematics, E.N.S., PoBox 92, 16050 Kouba, Algiers, Algeria
  2. Laboratory of Mathematics, Sidi-Bel-Abbès University, PoBox 89, 22000 Sidi-Bel-Abbès, Algeria

Abstract

In this paper, we study ϕ-Laplacian problems for differential inclusions with Dirichlet boundary conditions. We prove the existence of solutions under both convexity and nonconvexity conditions on the multi-valued right-hand side. The nonlinearity satisfies either a Nagumo-type growth condition or an integrably boundedness one. The proofs rely on the Bonhnenblust-Karlin fixed point theorem and the Bressan-Colombo selection theorem respectively. Two applications to a problem from control theory are provided.

Keywords

differential inclusions, boundary value problem, fixed point, compact, convex, nonconvex, decomposable, continuous selection, controllability

Bibliography

  1. R.P. Agarwal, H. Lü and D. O'Regan, Eigenvalues and the One-Dimensional p-Laplacian, J. Math. Anal. Appl. 266 (2002), 383-400. doi:10.1006/jmaa.2001.7742
  2. J. Appell, E. De Pascal, N.H. Thái and P.P. Zabreiko, Multi-valued superpositions, Dissertationaes Mathematicae 345 1995.
  3. J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984.
  4. J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.
  5. S.A. Aysagaliev, K.O. Onaybar and T.G. Mazakov, The controllability of nonlinear systems, Izv. Akad. Nauk. Kazakh-SSR.-Ser. Fiz-Mat. 1 (1985), 307-314.
  6. D. Bainov and P. Simeonov, Integral Inequalities and Applications, Mathematics and its Applications, Vol. 57, Kluwer Academic Publishers, Dordrecht, 1992.
  7. S. Barnet, Introduction to Mathematical Control Theory, Clarendon Press, Oxford, 1975.
  8. M. Benchohra and S.K. Ntouyas, Multi-point boundary value problems for lower semicontinuous differential inclusions, Miskolc Math. Notes 3 (2) (2005), 19-26.
  9. M. Benchohra, S.K. Ntouyas and L. Górniewicz, Controllability of Some Nonlinear Systems in Banach Spaces (The fixed point theory approch), Plock University Press, 2003.
  10. M. Benchohra, S.K. Ntouyas and A. Ouahab, A note on a nonlinear m-point boundary value problem for p-Laplacian differential inclusions, Miskolc Math. Notes 6 (1) (2005), 19-26.
  11. M. Benchohra and A. Ouahab, Controllability results for functional semilinear differential inclusions in Fréchet Spaces, Nonlin. Anal., T.M.A. 61 (2005), 405-423.
  12. A. Benmezaï, S. Djebali and T. Moussaoui, Positive solutions for ϕ-Laplacian Dirichlet BVPs, Fixed point Theory 8 (2) (2007), 167-186.
  13. A. Benmezaï, S. Djebali and T. Moussaoui, Existence Results for One-dimensional Dirichlet ϕ-Laplacian BVPs: a fixed point approach, Dyn. Syst. and Appli. 17 (2008), 149-166.
  14. S. Bernfeld and V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974.
  15. H.F. Bohnenblust and S. Karlin, On a theorem of Ville, in: Contribution to the theory of Games, Ann. of Math. Stud. (1950) 155-160.
  16. A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86.
  17. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 580 1977.
  18. F.S. De Blasi and J. Myjak, On continuous approximations for multifunctions, Pacific J. Math. 123 (1986), 9-31.
  19. K. Deimling, Multi-valued Differential Equations, De Gruyter, Berlin-New York, 1992.
  20. J. Dugundji and A. Granas, Fixed point Theory, Springer-Verlag, New York, 2003.
  21. L. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions y''(t)∈ F(t,y,y'), Ann. Polon. Math. 54 (1991), 195-226.
  22. L. Erbe, R. Ma and C.C. Tisdell, On two point boundary value problems for second order differential inclusions, Dyn. Syst. and Appl. 16 (1) (2006), 79-88.
  23. H. Frankowska, A priori estimates for operational differential inclusions, J. Diff. Eqns. 84 (1990), 100-128.
  24. M. Frigon, Application de la Théorie de la Transversalité Topologique à des Problèmes non Linéaires pour des Équations Différentielles Ordinaires, Dissertationes Mathematicae Warszawa, Vol. CCXCVI, 1990.
  25. M. Frigon, Théorèmes d'existence de solutions d'inclusions différentielles, Topological Methods in Differential Equations and Inclusions (edited by A. Granas and M. Frigon), 51-87, NATO ASI Series C, Kluwer Acad. Publ., Dordrecht, 472 1995.
  26. L. Gasinski and N.S. Papageorgiou, Nonlinear second order multi-valued boundary value problems, Proc. Indian Acad. Sci. Math. Sci. 113 (2003), 293-319.
  27. L. Górniewicz, Topological Fixed Point Theory of Multi-valued Mappings, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht 495 1999.
  28. J. Henderson, Boundary Value Problems for Functional Differential Equations, World Scientific, Singapore, 1995.
  29. Sh. Hu and N.S. Papageorgiou, Handbook of Multi-valued Analysis, Volume I: Theory, Kluwer, Dordrecht, The Netherlands, 1997.
  30. Sh. Hu and N.S. Papageorgiou, Handbook of Multi-valued Analysis, Volume II: Applications, Kluwer, Dordrecht, The Netherlands, 2000.
  31. M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multi-valued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter & Co. Berlin, 2001.
  32. D. Kandilakis and N.S. Papageorgiou, Existence theorem for nonlinear boundary value problems for second order differential inclusions, J. Diff. Eqns 132 (1996), 107-125.
  33. M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991.
  34. V.I. Korobov, Reduction of a controllability problem to a boundary value problem, Different. Uranen. 12 (1976), 1310-1312.
  35. N.N. Krasovsky, Theory of Motion Control, Linear Systems, Nauka, Moscow, 1973.
  36. A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.
  37. H. Lian and W. Ge, Positive solutions for a four-point boundary value problem with the p-Laplacian, Nonlin. Anal., T.M.A. 68 (11) (2008), 3493-3503.
  38. H. Lü and C. Zhong, A Note on singular nonlinear boundary value problem for the one-Dimensional p-Laplacian, Appl. Math. Lett. 14 (2001), 189-194. doi:10.1016/S0893-9659(00)00134-8
  39. J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, AMS Regional Conf. Series in Math. Providence, RI, 40 1979.
  40. E.H. Papageorgiou and N.S. Papageorgiou, Nonlinear boundary value problems involving the p-Laplacian and p-Laplacian-like operators, J. for Anal. and its Appl. 24 (4) (2005), 691-707.
  41. N.S. Papageorgiou, S.R.A. Santos and V. Staicu, Three nontrivial solutions for the p-Laplacian with a nonsmooth potential, Nonlin. Anal., T.M.A. 68 (12) (2008), 3812-3827.
  42. N.S. Papageorgiou and V. Staicu, The method of upper-lower solutions for nonlinear second order differential inclusions, Nonlin. Anal., T.M.A. 67 (2007), 708-726.
  43. R. Precup, Fixed point theorems for decomposable multi-valued maps ans applications, J. Anal. and Appl. 22 (4) (2003), 843-861.
  44. I. Rachunkova and M. Tvrdy, Periodic problems with ϕ-Laplacian involving non-ordered lower and upper solutions, Fixed Point Theory 6 (2005), 99-112.
  45. G.V. Smirnov, Introduction to the Theory of Differential Inclusions, Graduate Studies in Mathematics 41, American Mathematical Society, Providence, 2002.
  46. N. Thihoai and N. Van Loi, Positive solutions and continuous branches for boundary-value problems of diffrential inclusions, Elec. J. Diff. Eqns. 98 (2007), 1-8.
  47. A.A. Tolstonogov, Differential Inclusions in a Banach Space, Kluwer, Dordrecht, The Netherlands, 2000.
  48. H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl. 281 (2003), 287-306.
Pages:
23-49
Main language of publication
English
Received
2008-03-17
Accepted
2008-08-10
Published
2010
Exact and natural sciences