ArticleOriginal scientific text

Title

Second-order viability result in Banach spaces

Authors 1, 1

Affiliations

  1. University Hassan II-Mohammedia, U.F.R Mathematics and Applications, F.S.T, BP 146, Mohammedia, Morocco

Abstract

We show the existence result of viable solutions to the second-order differential inclusion ẍ(t) ∈ F(t,x(t),ẋ(t)), x(0) = x₀, ẋ(0) = y₀, x(t) ∈ K on [0,T], where K is a closed subset of a separable Banach space E and F(·,·,·) is a closed multifunction, integrably bounded, measurable with respect to the first argument and Lipschitz continuous with respect to the third argument.

Keywords

differential inclusion,viability, measurability, selection

Bibliography

  1. B. Aghezzaf and S. Sajid, On the second-order contingent set and differential inclusions, J. Conv. Anal. 7 (1) (2000), 183-195.
  2. K.S. Alkulaibi and A.G. Ibrahim, On existence of monotone solutions for second-order non-convex differential inclusions in infinite dimensional spaces, Portugaliae Mathematica 61 (2) (2004), 231-143.
  3. S. Amine, R. Morchadi and S. Sajid, Carathéodory perturbation of a second-order differential inclusions with constraints, Electronic J. Diff. Eq. (2005), 1-11.
  4. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. doi:10.1007/BFb0087685
  5. B. Cornet and G. Haddad, Théorème de viabilité pour les inclusions différentielles du seconde ordre, Isr. J. Math. 57 (2) (1987), 225-238.
  6. A. Dubovitskij and A.A. Miljutin, Extremums problems with constraints, Soviet Math. 4 (1963), 452-455.
  7. T.X. Duc Ha, Existence of viable solutions for nonconvex-valued differential inclusions in Banach spaces, Portugaliae Mathematica 52 Fasc. 2, 1995.
  8. M. Larrieu, Invariance d'un fermé pour un champ de vecteurs de Carathéodory, Pub. Math. de Pau, 1981.
  9. V. Lupulescu, A viability result for second order differential inclusions, Electron J. Diff. Eq. 76 (2003), 1-12.
  10. V. Lupulescu, Existence of solutions for nonconvex second order differential inclusions, Applied Math. E-notes 3 (2003), 115-123.
  11. R. Morchadi and S. Sajid, Noncovex second-order differential inclusion, Bulletin of the Polish Academy of Sciences 47 (3) (1999).
  12. Q. Zhu, On the solution set of differential inclusions in Banach spaces, J. Differ. Eq. 41 (2001), 1-8.
Pages:
5-21
Main language of publication
English
Received
2007-03-25
Published
2010
Exact and natural sciences