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Consider the Cauchy problem

(1) x(m)(t) = f(t, x(t)) +

∫ t

0
g(t, s, x(s))ds,

(2) x(0) = 0, x′(0) = η1, . . . , x
(m−1)(0) = ηm−1

in a Banach space E, where m ≥ 1 is a natural number. We assume that
D = [0, a], B = {x ∈ E : ‖ x ‖≤ b} and f : D × B → E, g : D2 × B → E

are bounded continuous functions. Let

m1 = sup{‖f(t, x)‖ : t ∈ D, x ∈ B}

m2 = sup{‖g(t, s, x)‖ : t, s ∈ D, x ∈ B}.

We choose a positive number d such that d ≤ a and

(3)

m−1∑

j=1

‖ ηj ‖
dj

j!
+ m1

dm

m!
+ m2

dm+1

m!
≤ b.

Let J = [0, d]. Denote by C = C(J,E) the Banach space of continuous
functions z : J → E with the usual norm ‖z‖C = maxt∈J ‖z(t)‖.

Let B̃ = {x ∈ C : ‖x‖C ≤ b}. For t ∈ J and x ∈ B̃ put

g̃(t, x) =

∫ t

0
g(t, s, x(s))ds.
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Fix τ ∈ J and x ∈ B̃. As the set J × x(J) is compact, from the continuity
of g it follows that for each ε > 0 there exists δ > 0 such that

‖g(t, s, x(s)) − g(τ, s, x(s))‖ < ε for t, s ∈ J with |t − τ | < δ.

In view of the inequality

‖g̃(t, x) − g̃(τ, x)‖ ≤ m2|t − τ | +

∫ τ

0
‖g(t, s, x(s)) − g(τ, s, x(s))‖ ds,

this implies the continuity of the function t → g̃(t, x). On the other hand,
the Lebesgue dominated convergence theorem proves that for each fixed
t ∈ J the function x → g̃(t, x) is continuous on B̃. Moreover,

‖g̃(t, x)‖ ≤ m2t for t ∈ J and x ∈ B̃.

Let α be the Kuratowski measure of noncompactness in E (cf. [1]).

The main result of the paper is the following

Theorem. Let w : IR+ 7→ IR+ be a continuous nondecreasing function such

that w(0) = 0, w(r) > 0 for r > 0 and

∫

0+

dr
m
√

rm−1w(r)
= ∞.

If

(4) α (f(t,X)) ≤ w (α(X)) for t ∈ J and X ⊂ B,

and the set g(D2 × B) is relatively compact in E, then there exists at least

one solution of (1)–(2) defined on J .

Proof. The problem (1)–(2) is equivalent to the integral equation

x(t) = p(t) +
1

(m − 1)!

∫ t

0
(t − s)m−1[f(s, x(s)) + g̃(s, x)]ds (t ∈ J),

where p(t) =
∑m−1

j=1 ηj
tj

j! . We define the mapping F by

F (x)(t) = p(t) +
1

(m − 1)!

∫ t

0
(t − s)m−1[f(s, x(s)) + g̃(s, x)]ds (t ∈ J, x ∈ B̃).
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Owing to (3), it is known (cf. [5]) that F is a continuous mapping B̃ 7→ B̃

and the set F (B̃) is equicontinuous. By the Mazur lemma the set W =⋃
0≤λ≤d λconvg(D2 × B) is relatively compact. Since {(t − s)m−1g̃(s, x) :

x ∈ B̃} ⊂ (t − s)m−1W , we have α({(t − s)m−1g̃(s, x) : x ∈ B̃}) ≤
(t − s)m−1α(W ) = 0. Therefore, by the Heinz lemma [2]

(5)

α

({
1

(m − 1)!

∫ t

0
(t − s)m−1g̃(s, x)ds : x ∈ B̃

})

≤
2

(m − 1)!

∫ t

0
α

({
(t − s)m−1g̃(s, x) : x ∈ B̃

})
ds = 0.

For any positive integer n put

vn(t) =





p(t) if 0 ≤ t ≤ d
n

p(t) + 1
(m−1)!

t− d
n∫

0

(t − s)m−1[f(s, vn(s)) + g̃(s, vn)]ds if d
n
≤ t ≤ d.

Then, by (3), vn ∈ B̃ and

(6) lim
n→∞

‖ vn − F (vn) ‖C= 0.

Put V = {vn : n ∈ N} and Z(t) = {x(t) : x ∈ Z} for t ∈ J and Z ⊂ C. As
V ⊂ {vn − F (vn) : n ∈ N} + F (V ) and V ⊂ B̃, from (6) it follows that the
set V is equicontinuous and the function t 7→ v(t) = α(V (t)) is continuous
on J . Applying now the Heinz lemma and (5), we get

α(F (V )(t)) =

= α

({
1

(m − 1)!

∫ t

0
(t − s)m−1[f(s, vn(s)) + g̃(s, vn)]ds : n ∈ N

})

≤ α

({
1

(m − 1)!

∫ t

0
(t − s)m−1f(s, vn(s))ds : n ∈ N

})

+ α

({
1

(m − 1)!

∫ t

0
(t − s)m−1g̃(s, x)ds : x ∈ B̃

})
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= α

({
1

(m − 1)!

∫ t

0
(t − s)m−1f(s, vn(s))ds : n ∈ N

})

≤
2

(m − 1)!

∫ t

0
α

({
(t − s)m−1f(s, vn(s)) : n ∈ N

})
ds

≤
2

(m − 1)!

∫ t

0
(t − s)m−1α(f(s, V (s))ds

≤
2

(m − 1)!

∫ t

0
(t − s)m−1w(α(V (s)))ds.

On the other hand, from (6) and the inclusion

V (t) ⊂ {vn(t) − F (vn)(t) : n ∈ N} + F (V )(t)

it follows that v(t) ≤ α (F (V )(t)) . Hence

v(t) ≤
2

(m − 1)!

∫ t

0
(t − s)m−1w(v(s))ds for t ∈ J.

Putting h(t) = 2
(m−1)!

∫ t

0 (t − s)m−1w(v(s))ds, we see that h ∈ Cm, v(t) ≤

h(t), h(j)(t) ≥ 0 for j = 0, 1, . . . ,m , h(j)(0) = 0 for j = 0, 1, . . . ,m − 1 and
h(m)(t) = 2w(v(t)) ≤ 2w(h(t)) for t ∈ J. By Theorem 1 of [6], from this we
deduce that h(t) = 0 for t ∈ J . Thus α(V (t)) = 0 for t ∈ J . Therefore for
each t ∈ J the set V (t) is relatively compact in E, and by Ascoli’s theorem
the set V is relatively compact in C. Hence we can find a subsequence (vnk

)
of (vn) which converges in C to a limit u. As F is continuous, from (6) we
conclude that u = F (u), so that u is a solution of (1)–(2).

Remark. It is known (cf. [7], Theorem 4) that under the assumptions of
the Theorem the set of all solutions of (1)–(2) defined on J is a compact Rδ

set in C(J,E).
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