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Consider the Cauchy problem

(1) 2™ () = f(t,a () + /0 o(t, 5,2(s))ds,

(2) 2(0) = 0,2'(0) = n1,..., 2 V(0) = gy

in a Banach space F, where m > 1 is a natural number. We assume that
D=1[0,a, B={z€E:|z|<bland f:DxB—E, g:D>*xB—E
are bounded continuous functions. Let

my1 =sup{||f(t,z)||: t€ D, x € B}
me = sup{||g(t,s,x)|| : t,s € D, x= € B}.

We choose a positive number d such that d < a and

m—1 dj dm dm+1
(3) [n | = +mi— +ma
= 4! m! m

Let J = [0,d]. Denote by C = C(J, E) the Banach space of continuous
functions z: J — E with the usual norm |[|z||¢ = maxe s [|2(1)]]-
Let B={z € C: ||z||c <b}. For t € J and z € B put

§(t,x):/0 g(t,s,xz(s))ds.
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Fix 7 € J and z € B. As the set J x x(J) is compact, from the continuity
of g it follows that for each € > 0 there exists 6 > 0 such that

llg(t, s, z(s)) — g(7,s,2(9))|| < e for t,s € J with |t — 7| <.

In view of the inequality

19(t,x) = g(r, 2)[| < malt — 7|+ /OT lg(t, s, 2(s)) = g(7, 5, 2(s)) | ds,

this implies the continuity of the function ¢ — g(¢,x). On the other hand,
the Lebesgue dominated convergence theorem proves that for each fixed
t € J the function z — g(¢, ) is continuous on B. Moreover,

1G(t, z)|| < mat for t € J and z € B.
Let a be the Kuratowski measure of noncompactness in E (cf. [1]).
The main result of the paper is the following

Theorem. Let w: IRy — IR, be a continuous nondecreasing function such
that w(0) =0, w(r) >0 forr >0 and

dr
If
(4) a(f(t, X)) <w(a(X)) for t € J and X C B,

and the set g(D? x B) is relatively compact in E, then there erxists at least
one solution of (1)—(2) defined on J.

Proof. The problem (1)—(2) is equivalent to the integral equation

1 )!/O(t—s)m1[f(s,x(s))+§(s,x)}d5 (te ),

z(t) = p(t) + m—1)!

where p(t) = Z;”;ll nj%. We define the mapping F by

1 t - . ~
F(z)(t) = p(t) +m /O(t — )" [f(s,2(s)) + g(s,2)lds (t € J,x € B).
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Owing to (3), it is known (cf. [5]) that F' is a continuous mapping B+ B
and the set F'(B) is equicontinuous. By the Mazur lemma the set W =
Uo<r<a Xeonvg(D? x B) is relatively compact. Since {(t — s)™ 1g(s, ) :
z € BY C (t —s)™ W, we have a({(t — s)™ '§(s,a) : x € B}) <
(t — s)™ La(W) = 0. Therefore, by the Heinz lemma [2]

o ({ﬁ/ot(t—s)m_lg(s,x)ds: ve E})

< ﬁ/ota({(t—s)m_lﬁ(s,m): xeé}) ds = 0.

(®)

For any positive integer n put

p(t) if 0<t<4
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Then, by (3), v, € B and
(6) Tim_ || v, — F(v) o= 0.

Put V.={v, :n € N} and Z(t) = {z(t) :z € Z} fort € J and Z C C. As
Vc{o,—F(v,):ne N+ F(V)and V C B, from (6) it follows that the
set V' is equicontinuous and the function ¢ — v(t) = «(V(t)) is continuous
on J. Applying now the Heinz lemma and (5), we get

a(F(V)(1) =
—a ({ﬁ /Ot(t S (s, 0n(5)) + (s, v)]ds € N})
o ({ﬁ /Ot(t )™ f (s, vn(s))ds < m € N})

+a ({ﬁ /Ot(t )G (s,)ds € E})
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- ({ﬁ /Ot(t )™ f (s, vn(s))ds < € N})

< ﬁ/o o ({(t — s)m_lf(s,vn(s)) in € N}) ds
< o | = e V)
< ﬁ/o (t —s)™ Lw(a(V(s)))ds.

On the other hand, from (6) and the inclusion
V(t) C {vn(t) = F(vy)(t) :ne€ N} + F(V)(¢)

it follows that v(t) < o (F(V)(t)). Hence

v(t) < ﬁ/o (t — s)" tw(v(s))ds for t e J.

Putting h(t) = (mzl)! f(f(t —s)™ lw(v(s))ds, we see that h € C™, v(t) <
h(t), h9)(t) > 0 for j =0,1,...,m , h9(0)=0for j =0,1,...,m — 1 and
R (1) = 2w(v(t)) < 2w(h(t)) for t € J. By Theorem 1 of [6], from this we
deduce that h(t) = 0 for ¢t € J. Thus «(V (t)) = 0 for ¢t € J. Therefore for
each t € J the set V (¢) is relatively compact in E, and by Ascoli’s theorem
the set V is relatively compact in C. Hence we can find a subsequence (v, )
of (vy,) which converges in C to a limit u. As F' is continuous, from (6) we

conclude that u = F'(u), so that u is a solution of (1)—(2).

Remark. It is known (cf. [7], Theorem 4) that under the assumptions of
the Theorem the set of all solutions of (1)—(2) defined on J is a compact Rs
set in C(J, E).
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