ArticleOriginal scientific text

Title

Weak solutions of stochastic differential inclusions and their compactness

Authors 1

Affiliations

  1. Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland

Abstract

In this paper, we consider weak solutions to stochastic inclusions driven by a semimartingale and a martingale problem formulated for such inclusions. Using this we analyze compactness of the set of solutions. The paper extends some earlier results known for stochastic differential inclusions driven by a diffusion process.

Keywords

semimartingale, stochastic differential inclusions, weak solutions, martingale problem, weak convergence of probability measures

Bibliography

  1. N.U. Ahmed, Nonlinear stochastic differential inclusions on Banach space, Stoch. Anal. Appl. 12 (1) (1994), 1-10.
  2. N.U. Ahmed, Impulsive perturbation of C₀ semigroups and stochastic evolution inclusions, Discuss. Math. DICO 22 (1) (2002), 125-149.
  3. N.U. Ahmed, Optimal relaxed controls for nonlinear infinite dimensional stochastic differential inclusions, Optimal Control of Differential Equations, M. Dekker Lect. Notes. 160 (1994), 1-19.
  4. N.U. Ahmed, Optimal relaxed controls for infinite dimensional stochastic systems of Zakai type, SIAM J. Contr. Optim. 34 (5) (1996), 1592-1615.
  5. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
  6. S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Vol. 1, Theory, Kluwer, Boston, 1997.
  7. J. Jacod, Weak and strong solutions of stochastic differential equations, Stochastics 3 (1980), 171-191.
  8. J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes. Springer, New York, 1987.
  9. M. Kisielewicz, M. Michta, J. Motyl, Set-valued approach to stochastic control. Parts I, II, Dynamic. Syst. Appl. 12 (3&4) (2003), 405-466.
  10. M. Kisielewicz, Quasi-retractive representation of solution set to stochastic inclusions, J. Appl. Math. Stochastic Anal. 10 (3) (1997), 227-238.
  11. M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800.
  12. M. Kisielewicz, Stochastic differential inclusions, Discuss. Math. Differential Incl. 17 (1-2) (1997), 51-65.
  13. M. Kisielewicz, Weak compactness of solution sets to stochastic differential inclusions with convex right-hand side, Topol. Meth. Nonlin. Anal. 18 (2003), 149-169.
  14. M. Kisielewicz, Weak compactness of solution sets to stochastic differential inclusions with non-convex right-hand sides, Stoch. Anal. Appl. 23 (5) (2005), 871-901.
  15. M. Kisielewicz, Stochastic differential inclusions and diffusion processes, J. Math. Anal. Appl. 334 (2) (2007), 1039-1054.
  16. A.A. Levakov, Stochastic differential inclusions, J. Differ. Eq. 2 (33) (2003), 212-221.
  17. M. Michta, On weak solutions to stochastic differential inclusions driven by semimartingales, Stoch. Anal. Appl. 22 (5) (2004), 1341-1361.
  18. M. Michta, Optimal solutions to stochastic differential inclusions, Applicationes Math. 29 (4) (2002), 387-398.
  19. M. Michta and J. Motyl, High order stochastic inclusions and their applications, Stoch. Anal. Appl. 23 (2005), 401-420.
  20. J. Motyl, Stochastic functional inclusion driven by semimartingale, Stoch. Anal. Appl. 16 (3) (1998), 517-532.
  21. J. Motyl, Existence of solutions of set-valued Itô equation, Bull. Acad. Pol. Sci. 46 (1998), 419-430.
  22. P. Protter, Stochastic Integration and Differential Equations: A New Approach, Springer, New York, 1990.
  23. L. Słomiński, Stability of stochastic differential equations driven by general semimartingales, Dissertationes Math. 349 (1996), 1-109.
  24. C. Stricker, Loi de semimartingales et critéres de compacité, Sem. de Probab. XIX Lecture Notes in Math. 1123 (1985), Springer Berlin.
  25. D. Stroock and S.R. Varadhan, Multidimensional Diffusion Processes, Springer, 1975.
Pages:
91-106
Main language of publication
English
Received
2009-06-05
Published
2009
Exact and natural sciences