ArticleOriginal scientific text

Title

Rates of convergence of Chlodovsky-Kantorovich polynomials in classes of locally integrable functions

Authors 1

Affiliations

  1. Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland

Abstract

In this paper we establish an estimation for the rate of pointwise convergence of the Chlodovsky-Kantorovich polynomials for functions f locally integrable on the interval [0,∞). In particular, corresponding estimation for functions f measurable and locally bounded on [0,∞) is presented, too.

Keywords

Chlodovsky polynomial, Kantorovich polynomial, rate of convergence

Bibliography

  1. J. Albrycht and J. Radecki, On a generalization of the theorem of Voronovskaya, Zeszyty Naukowe UAM, Zeszyt 2, Poznań (1960), 1-7.
  2. R. Bojanic and O. Shisha, Degree of L₁ approximation to integrable functions by modified Bernstein polynomials, J. Approx. Theory 13 (1975), 66-72.
  3. P.L. Butzer and H. Karsli, Voronovskaya-type theorems for derivatives of the Bernstein-Chlodovsky polynomials and the Szász-Mirakyan operator, Comment. Math., to appear.
  4. Z.A. Chanturiya, Modulus of variation of functions and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR 214 (1974), 63-66.
  5. I. Chlodovsky, Sur le développement des fonctions définies dans un intervalle infini en séries de polynomes de M.S. Bernstein, Compositio Math. 4 (1937), 380-393.
  6. M. Heilmann, Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl. 5 (1) (1989), 105-127.
  7. H. Karsli and E. Ibikli, Rate of convergence of Chlodovsky type Bernstein operators for functions of bounded variation, Numer. Funct. Anal. Optim. 28 (3-4) (2007), 367-378.
  8. G.G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, 1953.
  9. P. Pych-Taberska, Some properties of the Bézier-Kantorovich type operators, J. Approx. Theory 123 (2003), 256-269.
  10. L.C. Young, General inequalities for Stieltjes integrals and the convergence of Fourier series, Math. Annalen 115 (1938), 581-612.
  11. X.M. Zeng, Bounds for Bernstein basis functions and Meyer-König and Zeller basis functions, J. Math. Anal. Appl. 219 (2) (1998), 364-376.
  12. X.M. Zeng and A. Piriou On the rate of convergence of two Berstein-Bézier type operators for bounded variation functions, J. Approx. Theory 95 (1998), 369-387.
Pages:
53-66
Main language of publication
English
Received
2009-05-12
Published
2009
Exact and natural sciences