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Abstract

Proper orthogonal decomposition (POD) is a powerful technique
for model reduction of linear and non-linear systems. It is based on a
Galerkin type discretization with basis elements created from the sys-
tem itself. In this work, error estimates for Galerkin POD methods for
linear elliptic, parameter-dependent systems are proved. The result-
ing error bounds depend on the number of POD basis functions and
on the parameter grid that is used to generate the snapshots and to
compute the POD basis. The error estimates also hold for semi-linear
elliptic problems with monotone nonlinearity. Numerical examples are
included.
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1. Introduction

The proper orthogonal decomposition is a method for deriving low order
models for systems of differential equations. It is based on projecting the
system onto subspaces consisting of basis elements that contain character-
istics of the expected solution. This is in contrast to, e.g., finite element
techniques, where the elements of the subspaces are uncorrelated to the
physical properties of the system that they approximate.
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In this work, POD is applied to linear and semi-linear elliptic equations
with varying parameters. The POD basis is computed for the snapshots
consisting of solutions to the elliptic equation for different parameter values.
Error estimates for Galerkin POD type approximations are proven, where we
proceed as in [13, 14], where POD error estimates for parabolic systems were
derived. Asymptotic results are presented in the sense that the constants
appearing in the estimates do not depend on the snapshot set. Moreover,
two grids for the parameters are utilized, one for the set of snapshots and
the other for the numerical integration. The resulting error bounds depend
on the number of POD basis functions and on the snapshot grid.

Let us finally briefly comment on the literature containing applications
of POD. It was successfully used in different fields including signal analysis
and pattern recognition (see e.g., [6]), fluid dynamics and coherent structures
(see e.g., [9, 21]) and more recently in control theory (see e.g., [2, 12, 16])
and inverse problems [3]. The relationship between POD and balancing
was considered in [15, 20, 23]. Error analysis for nonlinear dynamical sys-
tems in finite dimensions was carried out in [10, 19]. Reduced-basis element
methods for parameter dependent elliptic were investigated, for instance,
in [4, 17, 18].

The paper is organized in the following manner: In Section 2, we intro-
duce our abstract elliptic problem. The POD approximation is described in
Section 3. Section 4 is devoted to present the POD error estimates. A semi-
linear elliptic problem is considered in Section 5. In Section 6, numerical
examples are shown.

2. Linear parameter dependent elliptic system

In this section, we introduce our abstract linear parameter dependent elliptic
system. Let V and H be real separable Hilbert spaces and suppose that V
is dense in H with compact embedding. By 〈· , ·〉H and 〈· , ·〉V we denote the
inner products in H and V , respectively. Since V is continuously injected
into H, there exists a constant cV > 0 such that

(1) ‖ϕ‖H ≤ cV ‖ϕ‖V for all ϕ ∈ V.

For µa, µb ∈ R with µa < µb we introduce the interval I = [µa, µb] containing
the admissible values for the parameters. Then we define the parametrized
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bilinear form a : V × V × I → R as

a(ϕ, φ;µ) = 〈ϕ, φ〉V + µ 〈ϕ, φ〉H for ϕ, φ ∈ V and µ ∈ I.

For any µ ∈ I we obtain

|a(ϕ, φ;µ)| ≤
(
1 + c2V max{|µa|, |µb|}

)
‖ϕ‖V ‖φ‖V for all ϕ, φ ∈ V,

i.e., the bilinear form a(· , · ;µ) is continuous on V × V for any µ ∈ I. Since

a(ϕ,ϕ;µ) = ‖ϕ‖2
V + µ ‖ϕ‖2

H for all ϕ ∈ V and µ ∈ I,

it follows that a(· , · ;µ) is coercive on V × V for every µ ∈ I provided

(2) ηa = 1 + 2c2V min{0, µa} > 0.

Let f ∈ V ′ be given. For a given parameter µ ∈ I we consider the following
variational problem: Find u = u(µ) ∈ V such that

(3) a(u, ϕ;µ) = 〈f, ϕ〉V ′,V for all ϕ ∈ V,

where 〈· , ·〉V ′,V stands for the duality pairing of V and its dual space V ′.
For examples we refer the reader to (40) and also to [5].

The following theorem ensures that (3) admits a unique solution.

Theorem 2.1. Suppose that (2) holds. For every µ ∈ I there exists a unique
solution u = u(µ) ∈ V to (3) satisfying

(4) ‖u‖V ≤ 1√
ηa

‖f‖V ′ .

Moreover, the mapping u : I → V , µ 7→ u(µ) is Lipschitz-continuous.

Proof. Since the bilinear form a(· , · ;µ) is continuous and coercive on V ×V
for every parameter µ ∈ I, the existence of a unique solution to (3) follows
directly from the Lax-Milgram lemma; see [5], for instance.

Together with (3) we will consider a discretized variational problem, where
we apply the POD for the discretization of V . In the next section, we will
describe the POD Galerkin approximation of the variational problem (3).
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3. The POD Galerkin discretization

In this section, we follow the arguments in [14] for time-dependent systems.
Henceforth, we denote by u = u(µ) ∈ V the associated solution to (3) for a
parameter µ ∈ I.

3.1. The POD method

We define the bounded linear operator C : L2(I) → V (i.e., C ∈ L2(I;V ))
by

Cϕ =

∫

I

ϕ(µ)u(µ) dµ for ϕ ∈ L2(I).

Its Hilbert space adjoint C∗ : V → L2(I) satisfying

〈Cϕ, z〉V = 〈ϕ, C∗z〉L2(I) for all (ϕ, z) ∈ L2(I) × V

is given by
(
C∗z

)
(µ) = 〈z, u(µ)〉V for z ∈ V and µ ∈ I.

Furthermore, we find that the bounded, linear, symmetric and non-negative
operator R = CC∗ : V → V has the form

(5) Rz =

∫

I

〈z, u(µ)〉V u(µ) dµ for z ∈ V.

The operator K = C∗C : L2(I) → L2(I) is given by

(6)
(
Kϕ

)
(µ̄) =

∫

I

〈u(µ), u(µ̄)〉V ϕ(µ) dµ for ϕ ∈ L2(I).

Due to Theorem 2.1 the mapping u : I → V , µ 7→ u(µ) is Lipschitz-
continuous. Hence,

∫

I

∫

I

∣
∣〈u(µ), u(µ̄)〉V

∣
∣2 dµ̄dµ <∞.

This implies that K = C∗C is compact and, therefore, R = CC∗ is compact
as well. From the Hilbert-Schmidt theorem it follows that there exists a
complete orthonormal basis {ψi}i∈N for V and a sequence {λi}i∈N of non-
negative real numbers so that

Rψi = λiψi, λ1 ≥ λ2 ≥ . . . , and λi → 0 as i→ ∞.
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The spectra of R are pure point spectra except for possibly 0. Each non-zero
eigenvalue of R has finite multiplicity and 0 is the only possible accumulation
point of the spectrum of R, see [11, p. 185]. Let us note that

∫

I

‖u(µ)‖2
V dµ =

∞∑

i=1

λi.

Remark 3.1. Analogous to the theory of singular value decomposition for
matrices, we find that the bounded, linear, symmetric and non-negative
operator K (see (6)) has the same eigenvalues {λi}i∈N as the operator R
and the eigenfunctions

vi(µ) =
1√
λi

(
C∗ψi

)
(µ) =

1√
λi

〈ψi, u(µ)〉V

for i ∈ {j ∈ N : λj > 0} and almost all µ ∈ I. ♦

For a given ` ∈ N we introduce the mapping

J : V × . . . × V
︸ ︷︷ ︸

`−times

→ R

by

(7) J(ψ1, . . . , ψ`) =

∫

I

∥
∥
∥u(µ) −

∑̀

i=1

〈u(µ), ψi〉V ψi

∥
∥
∥

2

V
dµ.

In the following theorem, we formulate properties of the eigenvalues and
eigenfunctions of R.

Theorem 3.2. Let {λi}i∈N and {ψi}i∈N denote the eigenvalues and eigen-
functions, respectively, of R introduced in (5). Then, for every ` ∈ N the
first ` eigenfunctions ψ1, . . . , ψ` ∈ V solve the minimization problem

(8) min J(ψ̃1, . . . , ψ̃`) s.t. 〈ψ̃j , ψ̃i〉V = δij for 1 ≤ i, j ≤ `,

where J is defined in (7). Moreover,

(9) J(ψ1, . . . , ψ`) =

∞∑

i=`+1

λi for any ` ∈ N.
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Proof. The proof of the claim relies on the fact that the eigenvalue problem

(10) Rψi = λiψi for i = 1, . . . , `

is the first-order necessary optimality condition for (8). For more details we
refer the reader to [9, Section 3].

We call a solution to (8) a POD basis of rank `. In particular, we have [9,
Section 3.3]:

∑̀

i=1

∫

I

∣
∣〈u(µ), ψi〉V

∣
∣2 dµ ≥

∑̀

i=1

∫

I

∣
∣〈u(µ), χi〉V

∣
∣2 dµ

for every ` ∈ N, where {χi}i∈N is an arbitrary orthonormal basis in V .

3.2. Numerical realization of the POD method

In applications the weak solution to (3) is not known for all parameters
µ ∈ I, but only for a given grid in I. For that purpose let

(11) µa = µ1 < µ2 < . . . < µn = µb

be a grid in I and let ui = u(µi), 1 ≤ i ≤ n, denote the corresponding
solutions to (3) for the grid points µi. We define the snapshot set Vn =
span {u1, . . . , un} ⊂ V and determine a POD basis of rank ` ≤ n for Vn by
solving

(12) min

n∑

j=1

αj

∥
∥
∥
∥
uj −

∑̀

i=1

〈uj , ψi〉V ψi

∥
∥
∥
∥

2

V

s.t. 〈ψi, ψj〉V = δij , 1 ≤ i, j ≤ `

where the αj ’s are non-negative weights. The solution to (12) is given by
the solution to the eigenvalue problem

Rnψn
i = λn

i ψ
n
i , i = 1, . . . , `,

with

Rnψ =

n∑

j=1

αj 〈uj , ψ〉V uj for ψ ∈ V.

In contrast to R introduced in (5) the operator Rn and therefore its eigenval-
ues and eigenfunctions depend on the grid {µj}n

j=1. Furthermore, the image
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space of Rn has finite dimension dn ≤ n, whereas, in general, the image space
of the operator R is infinite-dimensional. Since Rn is a linear, bounded, com-
pact, non-negative, self-adjoint operator, there exist eigenvalues {λn

i }dn

i=1 and
orthonormal eigenfunctions {ψn

i }`
i=1 with λ1 ≥ λ2 ≥ . . . ≥ λdn > 0 and

n∑

j=1

αj

∥
∥
∥
∥
uj −

∑̀

i=1

〈uj , ψi〉V ψi

∥
∥
∥
∥

2

V

=
dn

∑

i=`+1

λn
i .

Remark 3.3 (Snapshot POD [21]). Let us supply R
n with the weighted

inner product

〈v, w〉
Rn =

n∑

i=1

αiviwi for v = (v1, . . . , vn)T , w = (w1, . . . , wn)T ∈ R
n.

If the αi’s are trapezoidal weights corresponding to the parameter grid
{µi}n

i=1 then the inner product 〈· , ·〉Rn is a discrete version of the inner
product in L2(I). We define the symmetric non-negative matrix Kn ∈ R

n×n

with the elements 〈ui, uj〉V , 1 ≤ i, j ≤ n, and consider the eigenvalue prob-
lem

(13) Knvn
i = λn

i v
n
i , 1 ≤ i ≤ ` and 〈vn

i , v
n
j 〉Rn

= δij , 1 ≤ i, j ≤ ` ≤ dn

From the singular value decomposition it follows that Kn has the same
eigenvalues {λn

i }dn

i=1 as the operator Rn; compare Remark 3.1 and [14]. Fur-
thermore, the POD basis functions are given by the formula

(14) ψi =
1

√
λn

i

n∑

j=1

αj(v
n
i )juj for i = 1, . . . , `,

where (vn
i )j denotes the jth-component of the eigenvector vn

i ∈ R
n. In our

numerical test examples, we compute the POD basis by solving (13) and
using (14). ♦

3.3. POD Galerkin scheme

Let us fix ` ∈ N and compute the first ` POD basis functions ψ1, . . . , ψ` ∈ V
by solving either (10) or Kvi = λvi for i = 1, . . . , ` (see Remark 3.1). Then
we define the finite dimensional linear space

V ` = span
{
ψ1, . . . , ψ`

}
⊂ V.
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Endowed with the topology in V it follows that V ` is a Hilbert space. Next
we introduce the orthogonal projection P ` of V onto V `:

(15) P`ϕ =
∑̀

i=1

〈ϕ,ψi〉V ψi for ϕ ∈ V.

By (7) and (9),

(16) J(ψ, . . . , ψ`) =

∫

I

∥
∥
∥u(µ) −P`u(µ)

∥
∥
∥

2

V
dµ =

∞∑

i=`+1

λi.

From (15) and P`ψ = ψ for all ψ ∈ V ` it follows that

(17)

〈P`ϕ,ψ〉V =

〈
∑̀

i=1
〈ϕ,ψi〉V ψi, ψ

〉

V

=
∑̀

i=1
〈ϕ,ψi〉V 〈ψ,ψi〉V

=

〈

ϕ,
∑̀

i=1
〈ψ,ψi〉V ψi

〉

V

= 〈ϕ,P`ψ〉V = 〈ϕ,ψ〉V

for all ϕ ∈ V and all ψ ∈ V `. Since the ψi’s are orthonormal in V , we have
‖P`‖L(V ) = 1, where L(V ) denotes the Banach space of all bounded linear
operators from V into itself endowed with the common norm.

The POD Galerkin scheme for (3) leads to the following linear problem:
for a given µ ∈ I determine a function u` ∈ V ` such that

(18) a(u`, ψ;µ) = 〈f, ψ〉V ′,V for all ψ ∈ V `.

The proof of the existence of a unique solution u` to (18) follows by the
same arguments as Theorem 2.1. Moreover, (4) holds also for u`.

4. POD error estimates

The goal of this section is to derive error estimates for the difference between
the solution u = u(µ) to (3) and the POD solution u`(µ) to (18) for µ ∈ I
in terms of the sum

∑∞
i=`+1 λi, i.e., in terms of the sum over the eigenvalues

corresponding to the not-modelled eigenmodes.
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4.1. Continuous POD

First, we study the case where the solution to (3) is known for all µ ∈ I.
We make the decomposition

u`(µ) − u(µ) = u`(µ) −P`u(µ) + P`u(µ) − u(µ) = ϑ`(µ) + %`(µ),

where ϑ`(µ) = u`(µ) − P`u(µ) and %`(µ) = P`u(µ) − u(µ). From (16) we
know

(19)

∫

I

‖%`(µ)‖2

V dµ =

∞∑

i=`+1

λi.

Next we estimate ϑ`(µ) ∈ V `. Using (3), (17) and (18) we obtain

a(ϑ`(µ), ψ;µ) = 〈u`(µ), ψ〉V + µ 〈u`(µ), ψ〉H − 〈u(µ), ψ〉V − µ 〈P`u(µ), ψ〉H

= 〈f, ψ〉V ′,V − 〈u(µ), ψ〉V − µ 〈P`u(µ), ψ〉H

= µ 〈u(µ) −P`u(µ), ψ〉H = −µ 〈%`(µ), ψ〉H .

Choosing ψ = ϑ`(µ) and using (1) we find

(20)

(
1 + c2V min{0, µa}

)
‖ϑ`(µ)‖2

V ≤ |µ| ‖%`(µ)‖H‖ϑ`(µ)‖H

≤ cV |µ| ‖%`(µ)‖H‖ϑ`(µ)‖V .

From Young’s inequality (see [1, p. 28])

cV |µ| ‖%`(µ)‖H‖ϑ`(µ)‖V ≤ c2V µ
2

2ηa

‖%`(µ)‖2

H +
ηa

2
‖ϑ`(µ)‖2

V ,

where ηa > 0 has been introduced in (2). Hence, by (20)

(21) ‖ϑ`(µ)‖2

V ≤ c4V µ
2

ηa

‖%`(µ)‖2

V .
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Summarizing,
∫

I

‖u`(µ) − u(µ)‖2

V dµ ≤ 2

∫

I

‖ϑ`(µ)‖2

V + ‖%`(µ)‖2

V dµ

≤ 2

∫

I

(
c4V µ

2

η2
a

+ 1

)

‖%`(µ)‖2

V dµ

≤ 2

(
c4V max{µ2

a, µ
2
b}

η2
a

+ 1

)∫

I

‖%`(µ)‖2

V dµ.

Applying (19) we have proved the next theorem.

Theorem 4.1. Suppose that (2) holds. For µ ∈ I = [µa, µb] we denote by
u(µ) and u`(µ) the solutions to (3) and (18), respectively. Then there exists
a constant C > 0 depending on µa, µb, cV such that

(22)

∫

I

‖u`(µ) − u(µ)‖2

V dµ ≤ C

∞∑

i=`+1

λi.

Remark 4.2. Let us introduce for a given ` ∈ N the mapping

J̃ : H × . . . ×H
︸ ︷︷ ︸

`−times

→ R

by

J̃(ψ1, . . . , ψ`) =

∫

I

∥
∥
∥u(µ) −

∑̀

i=1

〈u(µ), ψi〉Hψi

∥
∥
∥

2

H
dµ.

Analogous to Section 3.1, we can compute the POD basis by solving the
minimization problem

(23) min J̃(ψ̃1, . . . , ψ̃`) s.t. 〈ψ̃j , ψ̃i〉V = δij for 1 ≤ i, j ≤ `.

Since (17) does not hold, we obtain

a(ϑ`(µ), ψ;µ) = −a(%`(µ), ψ;µ) for all ψ ∈ V `.

Choosing ψ = ϑ`(µ) we find

ηa ‖ϑ`(µ)‖2

V ≤ C1 ‖%`(µ)‖V ‖ϑ`(µ)‖V
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with C1 = 1 + c2V max{|µa|, |µb|}. Using Young’s inequality there exists a
constant C2 > 0 such that

∫

I

‖ϑ`(µ)‖2

V dµ ≤ C2

∫

I

‖%`(µ)‖2

V dµ.

In contrast to (19) we have

∫

I

‖%`(µ)‖2

H dµ =

∞∑

i=`+1

λi.

From Lemma 3 in [13] it follows that

∫

I

‖%`(µ)‖2

V dµ ≤ ‖S`‖2

∫

I

‖%`(µ)‖2

H dµ = ‖S`‖2

∞∑

i=`+1

λi.

where S` ∈ R
`×` denotes the stiffness matrix with the elements 〈ψi, ψj〉V ,

1 ≤ i, j ≤ `, and ‖ · ‖2 stands for the spectral norm of real, symmetric
matrices. Therefore, if we compute the POD basis using the H-topology,
the constant C in (22) depends on the spectral norm of S `. ♦

4.2. Discrete POD

Suppose that the weak solution to (3) is not known for all parameters µ ∈ I,
but for the parameter grid {µi}n

i=1 introduced in (11). Let ui = u(µi),
1 ≤ i ≤ n, denote the corresponding solutions to (3) for the grid points µi.
We define the snapshot set Vn = span {u1, . . . , un} ⊂ V and determine a
POD basis of rank ` ≤ n for Vn by solving (12).

Proposition 4.3. Suppose that (2) holds and that {µj}n
j=1 is a grid in the

interval I satisfying (11). For µj, 1 ≤ j ≤ n, we denote by u(µj) and u`(µj)
the solutions to (3) and (18), respectively. Then there exists a constant
C > 0 depending on µa, µb, cV , but independent on the grid {µj}n

j=1 such
that

n∑

j=1

αj ‖u`(µj) − u(µj)‖
2

V
≤ C

dn

∑

i=`+1

λn
i .

Proof. We argue as in the proof of Theorem 4.1. Instead of (19) and (21)
we obtain

n∑

j=1

αj ‖%`(µj)‖
2

V
=

dn

∑

i=`+1

λn
i
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and

‖ϑ`(µj)‖
2

V
≤
c2V µ

2
j

ηa

‖%`(µj)‖
2

V
,

respectively. Now the claim follows by analogous arguments as in the proof
of Theorem 4.1.

Next we suppose that we are given two different grids {µj}n
j=1 and {µ̄k}m

k=1

in I satisfying

(24) µa = µ1 < µ2 < . . . < µn = µb, µa = µ̄1 < µ̄2 < . . . < µ̄m = µb.

We set

δµj = µj − µj−1, j = 2, . . . , n, δµ = min
2≤j≤n

δµj , ∆µ = max
2≤j≤n

δµj ,

δµ̄k = µ̄k − µ̄k−1, k = 2, . . . ,m, δµ̄ = min
2≤k≤m

δµ̄k, ∆µ̄ = max
2≤k≤m

δµ̄k.

Moreover, let

α1 =
δµ2

2
, αj =

δµj + δµj+1

2
for 2 ≤ j ≤ n− 1, αn =

δµn

2
,

β1 =
δµ̄2

2
, βk =

δµ̄k + δµ̄k+1

2
for 2 ≤ k ≤ m− 1, βm =

δµ̄m

2
.

The goal is to estimate

m∑

k=1

βk‖u(µ̄k) − u`(µ̄k)‖
2

V ,

whereas the POD basis of rank ` is computed by using the snapshot ensemble
{u(µj)}n

j=1 depending on the grid {µj}n
j=1. Let µ̄k ∈ I, k ∈ {1, . . . ,m}, be

given. Then there exists an index jk ∈ {1, . . . , n− 1} such that

µjk
≤ µ̄k ≤ µjk+1.

Let us define σm ∈ {1, . . . ,m} as the maximum of the occurrence of the
same value jk as k ranges over 1 ≤ k ≤ m. Notice that

max
{
|µ̄k − µjk+1|, |µ̄k − µjk

|
}
≤ δµjk+1 ≤ ∆µ.
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For every k ∈ {1, . . . ,m} we decompose the error u(µ̄k)− u`(µ̄k) as follows:

(25) u(µ̄k)−u`(µ̄k) = u(µ̄k)−u(µjk
)+u(µjk

)−u`(µjk
)+u`(µjk

)−u`(µ̄k).

Since µjk
belongs to the grid, where the snapshots are taken, we have already

estimated the difference u(µjk
) − u`(µjk

). From

a(u(µ̄k), ϕ; µ̄k) = 〈f, ϕ〉V ′,V for all ϕ ∈ V,

a(u(µjk
), ϕ;µjk

) = 〈f, ϕ〉V ′,V for all ϕ ∈ V

we obtain

〈u(µ̄k) − u(µjk
), ϕ〉

V
+ µ̄k 〈u(µ̄k), ϕ〉H − µjk

〈u(µjk
), ϕ〉

H
= 0

for all ϕ ∈ V . Consequently,

a(u(µ̄k) − u(µjk
), ϕ; µ̄k) =

(
µjk

− µ̄k

)
〈u(µjk

), ϕ〉
H
.

Choosing ϕ = u(µ̄k) − u(µjk
) and using (1) we deduce

‖u(µ̄k) − u(µjk
)‖2

V + µ̄k ‖u(µ̄k) − u(µjk
)‖2

H

≤ |µjk
− µ̄k| ‖u(µjk

)‖
H
‖u(µ̄k) − u(µjk

)‖
H

≤ δµjk+1 ‖u(µjk
)‖

H
‖u(µ̄k) − u(µjk

)‖
H

≤
c2V δµ

2
jk+1

2
‖u(µjk

)‖2
H

+
1

2
‖u(µ̄k) − u(µjk

)‖2
V
.

Thus, (1), (2) and (4) yield

(26) ‖u(µ̄k) − u(µjk
)‖2

V ≤ c4V
η2

a

δµ2
jk+1 ‖f‖2

V ′ .

Analogously, we obtain

(27) ‖u`(µ̄k) − u`(µjk
)‖2

V
≤ c4V
η2

a

δµ2
jk+1 ‖f‖2

V ′ .

Notice that βk ≤ ∆µ̄, 1 ≤ k ≤ m, and αj ≥ δµ/2, 1 ≤ j ≤ n. Thus,

βk ≤ 2αj∆µ̄

δµ
for 1 ≤ k ≤ m and 1 ≤ j ≤ n.
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We set C1 = 4c4V ‖f‖2
V ′/η2

a > 0. Using
∑m

k=1 βk = µb − µa, (25), (26) and
(27) we obtain

m∑

k=1

βk ‖u(µ̄k) − u`(µ̄k)‖
2

V

≤ 2

m∑

k=1

βk ‖u(µjk
) − u`(µjk

)‖2

V + C1

m∑

k=1

βk δµ
2
jk+1

≤ 4σm∆µ̄

δµ

n∑

j=1

αj ‖u(µj) − u`(µj)‖
2

V + C1(µb − µa)∆µ
2.

Hence, by Corollary 4.3 we have

m∑

k=1

βk ‖u(µ̄k) − u`(µ̄k)‖
2

V ≤ 4σm∆µ̄

δµ

dn

∑

i=`+1

λn
i + C2∆µ

2

with C2 = (µb − µa)C1 > 0. Thus, we have proved the following theorem.

Theorem 4.4. Suppose that (2) holds, that {µj}n
j=1 and {µ̄k}m

k=1 are two
grids in the interval I satisfying (24). For µ̄k, 1 ≤ k ≤ m, we denote by
u(µ̄k) and u`(µ̄k) the solutions to (3) and (18), respectively. Then there
exists a constant C > 0 depending on µa, µb, cV , but independent of the
grids such that

m∑

k=1

βk ‖u`(µ̄k) − u(µ̄k)‖
2

V ≤ C

(
σm∆µ̄

δµ

dn

∑

i=`+1

λn
i + ∆µ2

)

.

In Theorem 4.4 the eigenvalues {λi}dn

i=1, the eigenfunctions {ψi}dn

i=1 and σm

depend on the discretization of I for the snapshots as well as for the numer-
ical integration. We address this dependence next. If we suppose that both
grids satisfy

(28) ∆µ = O(δµ̄) and ∆µ̄ = O(δµ),

then there exists a constant C3 > 0 independent of {µj}n
j=1 and {µ̄k}m

k=1

such that

(29) max

(

σm,
σm∆µ̄

δµ

)

≤ C3.
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Due to Theorem 2.1 the mapping u : I → V , µ 7→ u(µ) is continuous. This
implies that

lim
n→∞

‖R −Rn‖L(V ) = 0.

Let us choose and fix ` such that

(30) λ` 6= λ`+1.

We can now proceed precisely as in [14] to assert that there exists ∆µ > 0
such that

(31)

dn

∑

i=`+1

λn
i ≤ 2

∞∑

i=`+1

λi for all ∆µ ≤ ∆µ

provided, of course, that the term on the right-hand side of (31) is different
from zero.

Theorem 4.5. Suppose that (2) holds, that {µj}n
j=1 and {µ̄k}m

k=1 are two
grids in the interval I satisfying (24). For µ̄k, 1 ≤ k ≤ m, we denote by
u(µ̄k) and u`(µ̄k) the solutions to (3) and (18), respectively. If (30) holds
and ` satisfies (31), then there exists a constant C > 0 depending on µa, µb,
cV , but independent of the grids such that

m∑

k=1

βk ‖u`(µ̄k) − u(µ̄k)‖
2

V ≤ C

( ∞∑

i=`+1

λi + ∆µ2

)

.

5. Continuous POD for semi-linear problem

Let us turn to a certain non-linear problem. Suppose that F : V → V ′ is a
non-linear, locally Lipschitz-continuous mapping satisfying

(32) 〈F (φ) − F (ϕ), φ − ϕ〉V ′,V ≥ 0 for all ϕ,ψ ∈ V,

i.e., F is monotone. Instead of (3), we consider

(33) a(u, ϕ;µ) + 〈F (u), ϕ〉V ′,V = 〈f, ϕ〉V ′,V for all ϕ ∈ V.
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Example 5.1. Let us give an example for a semi-linear problem satisfying
(32). We consider

(34) −∆u+ u3 + µu = g in Ω and
∂u

∂n
+ u = gR on Γ.

A weak solution to (34) satisfies u ∈ V and

(35)

∫

Ω
∇u · ∇ϕ+

(
u3 + µu

)
ϕdx+

∫

Γ
uϕds =

∫

Ω
gϕdx+

∫

Γ
gRϕds

for all ϕ ∈ V . We utilize the parametrized bilinear form a(· , · ;µ) : V×V → R

given by

a(ϕ, φ;µ) =

∫

Ω
∇ϕ · ∇φdx+

∫

Γ
ϕφds+ µ

∫

Ω
ϕφdx = 〈ϕ, φ〉V + µ 〈ϕ, φ〉H

for all ϕ, φ ∈ V , µ ∈ I and the linear and continuous functional f : V → R

defined as

〈f, ϕ〉V ′,V =

∫

Ω
gϕdx+

∫

Γ
gRϕds

for all ϕ ∈ V . Moreover, we define the non-linear operator F : V → V ′ by

〈F (φ), ϕ〉V ′,V =

∫

Ω
φ3ϕdx for φ, ϕ ∈ V.

Then, a weak solution to (34) satisfies the variational formulation (33).
Recall that ϕ ∈ V implies ϕ ∈ L6(Ω). Consequently, F (ϕ) ∈ H ⊂ V ′.
Let φ, ϕ ∈ V and χ = φ− ϕ ∈ V . From

〈F (φ) − F (ϕ), χ〉V ′,V =

∫

Ω
(φ3 − ϕ3)χdx

=

∫

Ω

(∫ 1

0
3(ϕ + sχ)2χds

)

χdx

= 3

∫ 1

0

∫

Ω
(φ+ sχ)2χ2 dxds ≥ 0

it follows that (32) holds the existence of a solution to (35) is proved in [7].
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Suppose that u, v ∈ V are two solutions to (35). Then we have

a(u− v, ϕ;µ) + 〈F (u) − F (v), ϕ〉V ′,V = 0 for all ϕ ∈ V and µ ∈ I.

Choosing ϕ = u − v, using (2) and (32) we derive that u = v in V . Thus,
(35) has a unique solution. From

〈F (ϕ), ϕ〉V ′,V =

∫

Ω
ϕ3ϕdx ≥ 0 for all ϕ ∈ V

it follows that the weak solution u satisfies the same estimate (4) as in the
linear case. ♦

Suppose that we have computed a POD basis {ψi}`
i=1 of rank ` by utilizing

the solution u(µ) to (33) for all µ ∈ I. The POD Galerkin scheme for (34)
is as follows: Find u` = u`(µ), µ ∈ I, such that

(36) a(u`, ψ;µ) + 〈F (u`), ψ〉V ′,V = 〈f, ψ〉V ′,V for all ψ ∈ V `.

In the following theorem, an error estimate is presented. The proof is anal-
ogous to the proof of Theorem 4.1.

Theorem 5.2. Let F : V → V ′ be a locally Lipschitz-continuous mapping
satisfying (32). Suppose that for every µ ∈ I = [µa, µb] there exist unique
solutions to (33) and (36) denoted by u(µ) and u`(µ), respectively. Then
there exists a constant C > 0 depending on µa, µb, cV and a Lipschitz
constant for F such that

∫

I

‖u`(µ) − u(µ)‖2

V dµ ≤ C

∞∑

i=`+1

λi.

Remark 5.3. If the POD basis is computed by the strategy in Section 3.2,
POD error estimates can also be derived combining the techniques in Sec-
tion 4.2 and the arguments in the proof of Theorem 5.2. ♦
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6. Numerical examples

This section is devoted to present two numerical test examples. All coding is
done in Matlab using routines from the Femlab package concerning finite
element implementation. The programs are executed on a standard 1.7 Ghz
desktop PC.

6.1. Estimating the decay of the eigenvalues

Here we apply the strategy that was proposed in [8]. From Theorem 4.1 we
conclude that the error u` − u can be estimated in terms of the unmodeled
eigenvalues, i.e.,

∫

I

‖u`(µ) − u(µ)‖2

V dµ ∼
∞∑

i=`+1

λi.

Suppose that the eigenvalues {λi}i∈N decay exponentially. Therefore, we
make the ansatz

(37) λi = λ1e
−α(i−1) for i ≥ 1,

where we want to determine the factor α > 0 numerically. Let X denote
either the space H or the space V . Notice that

∫

I
‖u`(µ) − u(µ)‖2

X dµ
∫

I
‖u`+1(µ) − u(µ)‖2

X dµ
∼

∞∑

i=`+1

λi

∞∑

i=`+2

λi

=

∞∑

i=`+1

e−α(i−1)

∞∑

i=`+2

e−α(i−1)

= eα

Thus, we have

(38) Q(`) = ln

∫

I
‖u`(µ) − u(µ)‖2

X dµ
∫

I
‖u`+1(µ) − u(µ)‖2

X dµ
∼ α,

and we may introduce the experimental order of decay (EOD) as

(39) EOD :=
1

`max

`max∑

k=1

Q(k)

so that EOD ≈ α.
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6.2. Test examples

We carry out two test examples which illustrate the theoretical results of
Section 4. For that purpose we consider the elliptic problem

−2∆u+ β · ∇u+ qu = 1 in Ω = (0, 1) × (0, 1) ⊂ R
2,(40a)

2
∂u

∂n
+

3

2
u = −1 on Γ = ∂Ω,(40b)

where q is a positive scalar, β = (β1, β2)
T belongs to C(Ω; R2), n denotes the

outward normal vector. We set H = L2(Ω) and V = H1(Ω). To write (40)
in the form (3) we introduce the parametrized bilinear mapping a(· , ·; q) by

a(ϕ, φ; q) =

∫

Ω
2∇ϕ · ∇φ+

(
β · ∇ϕ

)
φ+ qϕφdx+

3

2

∫

Γ
ϕφds for ϕ, φ ∈ V

and the bounded linear functional f ∈ V ′ as

〈f, ϕ〉V ′,V =

∫

Ω
ϕdx−

∫

Γ
ϕds for ϕ ∈ V.

Now, for a given q ≥ qa > 0 a weak solution u = u(q) ∈ V to (40) satisfies

a(u, ϕ; q) = 〈f, ϕ〉V ′,V for all ϕ ∈ V.

The finite element discretization is carried out by a uniform rectangular
mesh with mesh size h = 1/40 and piecewise linear finite elements. This
yields 1681 degrees of freedom.

Run 1. In our first test example we vary the parameter q in (40). We fix
β = (x, y)T , choose the parameter interval I = [−50.5, 50.5] and compute
solutions to (40) for parameters qi = −50.5 + (i− 1), i = 1, . . . , 102. Thus,
we obtain 102 snapshots and compute our POD basis as described in Re-
mark 3.3. Then we derive the POD Galerkin scheme for the elliptic problem.
For q = 40 the finite element and the corresponding POD solutions taking
` = 5 POD ansatz functions are presented in Figure 1.

It turns out that both solutions nearly coincide. In Figure 2 (left plot)
we show the real and estimated decay of the first 5 eigenvalues, where the
estimated decay is computed as desribed in Section 6.1 for X = L2(Ω).
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Figure 1. Run 1. POD solution (left plot) and FE solution (right plot) with
β = (x, y)T , q = 40, and snapshots for varying parameter q ∈ [−50.5, 50.5].
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Figure 2. Run 1. Real and predicted decay of eigenvalues with snapshots for varying
parameter q and β = (x, y)T (left plot) and relative errors for different numbers of
POD functions along an interval of parameters q with β = (x, y)T (right plot).
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Figure 3. Run 2. Real and predicted decay of eigenvalues (left plot) and relative
errors for different numbers of POD functions (right plot) with snapshots for β1 =
0.5 and varying parameter β2.

We observe that the experimental order of decay leads to a good estimate
for the decay of the first 5 eigenvalues. Furthermore, in Figure 2 the relative
error for the difference of the POD and FE solution is plotted for different
values of q ∈ [−20, 65] and for a different number of POD basis functions
1 ≤ ` ≤ 5. Notice that the relative L2 error decreases with increasing `.
Moreover, the POD basis is also suitable for parameter values (q ∈ (50.5, 65])
that are not contained in the snapshot computation. ♦

Run 2. In our second example, we fix q = 40 and vary the parameter vector
β in [0, 1] × [0, 1] as follows:

β =

(
0.1 + 0.15(i − 1)
0.1 + 0.15(j − 1)

)

for 1 ≤ i, j ≤ 7.

Thus, we compute 49 snapshots and compute the POD basis as described
in Remark 3.3. This example does not fit into the theoretical investigations
of Section 4. Compared to Run 1, we cannot expect that the experimental
order of decay (EOD) leads to a good estimate at the decay of the first
eigenvalues. The real and estimated decay is shown in Figure 3 (left plot).

Note that the first two eigenvalues are close to 0.5 so that we do not have
an exponential decay. However, the third and fourth eigenvalues can be
estimated very well. The fifth eigenvalue is already small. Let us mention
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that if we compute the POD basis by varying β1 and fixing β2 (and also vice
versa), we can estimate the decay of the eigenvalues in a similar manner as
in Run 1. ♦
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