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Abstract

Interior proximal methods for variational inequalities are, in fact,
designed to handle problems on polyhedral convex sets or balls, only.
Using a slightly modified concept of Bregman functions, we suggest
an interior proximal method for solving variational inequalities (with
maximal monotone operators) on convex, in general non-polyhedral
sets, including in particular the case in which the set is described by a
system of linear as well as strictly convex constraints. The convergence
analysis of the method studied admits the use of the ε-enlargement of
the operator and an inexact solution of the subproblems.
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1. Introduction

The proximal point method (PPM), originally developed by Martinet [23]
to solve convex optimization problems and further investigated in a more
general context (for finding zeros of a maximal monotone operator) by Rock-
afellar [29], has initiated a great number of new algorithms for various classes
of variational inequalities and related problems.

For the variational inequality

VI(Q,K) find x ∈ K, q ∈ Q(x) : 〈q, y − x〉 ≥ 0, ∀ y ∈ K,
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where K is a convex, closed subset of IRn, Q : IRn → 2IRn

is a maximal
monotone operator and 〈·, ·〉 stands for the inner product in IRn, the appli-
cation of the exact PPM can be described as follows.

Exact proximal point method:

Given v1 ∈ K and a sequence {χk}, 0 < χk ≤ χ̄ < ∞. With vk ∈ K

obtained in the previous step, define vk+1 ∈ K, qk+1 ∈ Q(vk+1) such that

〈qk+1 + χk∇1D(vk+1, vk), v − vk+1〉 ≥ 0 ∀ v ∈ K.

Here D : (x, y) 7→ ‖x− y‖2 and ∇1D denotes the partial gradient of D with
respect to the first vector argument.

For different modifications of the PPM, also with other quadratic dis-
tance functions D, we refer to [16, 17, 21] and the references therein. In
fact, the PPM can be viewed as a regularization method. According to the
convergence results, the parameter χk does not necessarily have to tend to 0,
and this ensures a much better numerical stability of regularized problems
than in classical regularization methods.

In the last decade, a new branch in PPM’s which deals with the use of
non-quadratic distance functions has been extensively studied. The main
motivation for this type of proximal methods is the following: for certain
classes of problems an appropriate choice of non-quadratic distance functions
permits one to preserve regularizing properties of the original version of the
PPM and at the same time this choice guarantees that the iterates stay in
the interior of the set K, i.e., with certain precautions, regularized problems
can be treated as unconstrained ones.

Usually, a Bregman distance, an entropic ϕ-divergence or a logarithmic-
quadratic distance are applied to construct such interior proximal methods

(see references in [10, 21, 31] and the recent papers [2, 3, 20]). However,
up to now, distance functions providing an interior point effect have been
created only for the case where K is a polyhedral convex set or a ball.

In the present paper, using a slightly modified definition of the class of
Bregman functions (see Remark 1), we extend the Bregman-function-based
interior proximal methods to solve V I(Q,K) with

K := {x ∈ IRn : gi(x) ≤ 0, i ∈ I},

under the assumptions that gi (i ∈ I) are convex, continuously differentiable
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functions and the function

max{gi : gi not affine}

is strictly convex on K. The operator Q is supposed to be maximal monotone
and paramonotone on K.

The modification in the definition of Bregman functions consists mainly
in a relaxation of the standard convergence sensing condition (Stand-B4 in
Remark 1) which proves to be restrictive already when K is a ball.

The convergence analysis of the method studied admits a successive
approximation of the operator Q by means of the ε-enlargement concept,
as well as an inexact solution of the subproblems under a criterion of the
summability of the error vectors (Section 2).

In Section 3, we check the validity of the modified requirements on
Bregman functions for some particular functions and discuss the Bregman-
function-based methods developed earlier under the provision of modifica-
tion mentioned above. In Appendix, two examples are given clarifying the
relaxation of the standard convergence sensing condition.

2. Interior proximal method

The variational inequality V I(Q,K) is considered under the following basic
assumptions:

A1 K ⊂ IRn is a convex closed set, Q : IRn → 2IRn

is a maximal monotone

operator;

A2 domQ ∩ intK 6= ∅;
A3 solution set SOL(Q,K) of V I(Q,K) is non-empty.

Assumptions A1 and A2 provide the maximal monotonicity of Q + NK ,
where NK is the normality operator of K (cf. [28], Theorem 1).

Let f be a Bregman-type function with zone intK. According to the
terminology of Bregman functions, under a zone of f we mean an open
convex set int domf . More precisely, we suppose:

B1 domf = K and f is continuous and strictly convex on K;

B2 f is continuously differentiable on intK;
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B3 With a generalized distance function

Df : (x, y) ∈ K × intK 7→ f(x) − f(y) − 〈∇f(y), x − y〉,

for each x ∈ K there exist constants α(x) > 0, c(x) such that

Df (x, y) + c(x) ≥ α(x)‖x − y‖, ∀ y ∈ intK;

B4 If {zk} ⊂ intK converges to z, then at least one of the following

properties is valid:

(i) lim
k→∞

Df (z, zk) = 0 or

(ii) limk→∞Df (z̄, zk) = +∞ if z̄ 6= z, z̄ ∈ bdK;

B5 (zone coercivity) ∇f(intK) = IRn.

Remark 1. Assumption B4 is evidently weaker than the standard conver-
gence sensing condition:

Stand-B4 If {zk} ⊂ intK converges to z, then lim
k→∞

Df (z, zk) = 0,

and it is closely related to condition (iv) in the definition of a generalized
Bregman function introduced by Kiwiel, see [21], Definition 2.4. The other
standard condition

Stand-B3 For any x ∈ K and any constant α the set
Lα(x) := {y ∈ intK : Df (x, y) ≤ α} is bounded,

follows immediately from B3. Both B3 and Stand-B3 are obviously valid if
K is a bounded set. �

Referring in the sequel to standard conditions on Bregman functions, we
mean the fulfillment of B1, B2, Stand-B3, Stand-B4, and one of the condi-
tions B5 or

B6 (boundary coercivity)
If {zk} ⊂ intK, limk→∞ zk = z ∈ bdK, then it holds for each x ∈ intK

lim
k→∞

〈

∇f(zk), x − zk
〉

= −∞.
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Remark 2. To our knowledge, among the Bregman functions (under stan-
dard conditions), considered in the literature (see [11, 12, 14] and references
therein), only the function

n
∑

j=1

(

xj − x
β
j

)

, 0 < β < 1

on K = IRn
+ does not satisfy B3. Assumption B3 was introduced in [20] in

order to weaken the stopping criteria in generalized proximal methods. �

In the sequel, we make use of

Lemma 1 ([30], Theorem 2.4). Let f satisfy conditions B1 and B2. If

{zk} ⊂ K, {yk} ⊂ intK, lim
k→∞

Df (zk, yk) = 0

and one of these sequences converges, then the other one converges to the

same limit, too.

Lemma 2. Let conditions B1, B2, Stand-B3 and B4 be valid and

{vk} ⊂ intK. Moreover, suppose that C is a non-empty subset of K,

{Df (x, vk)} converges for each x ∈ C, and each cluster point of {vk} be-

longs to C. Then {vk} converges to some v ∈ C.

Proof. Since {Df (x, vk)} converges for x ∈ C and Stand-B3 is valid, the
sequence {vk} is bounded. Take two subsequences {vlk} and {vnk} of {vk}
with

lim
k→∞

vlk = v∗, lim
k→∞

vnk = v̄.

If v̄ ∈ intK, then limk→∞ Df (v̄, vnk) = 0 follows from B2, and since the
whole sequence {Df (v̄, vk)} converges, one gets

lim
k→∞

Df (v̄, vk) = 0.

In turn, applying Lemma 1 with zk := v̄, yk := vlk , we conclude v∗ = v̄.
Now let v̄ ∈ bdK. We make use of B4 setting z := v∗, zk := vlk and

z̄ := v̄. If B4(i) is valid, then limk→∞ Df (v∗, vlk) = 0, hence

lim
k→∞

Df (v∗, vk) = 0.
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Again, Lemma 1 with zk := v∗, yk := vnk , yields v∗ = v̄. But if B4(ii)
holds, then v̄ 6= v∗ is also impossible taking into account that {Df (v̄, vk)}
is a convergent sequence.

Let us remind the ε-enlargement of an maximal monotone operator Q:

Qε(x) = {u ∈ IRn : 〈u − v, x − y〉 ≥ −ε ∀ y ∈ domQ, v ∈ Q(y)}.

For properties of the ε-enlargement, see [8, 9].

Now we describe the method under consideration.

Interior proximal method:

Starting with an arbitrary x1 ∈ intK, the method generates two sequences

{xk} ⊂ IRn and {ek} ⊂ IRn conforming to the recursion

(1) ek+1 ∈ Qk(xk+1) + χk∇1Df (xk+1, xk).

Here f is a Bregman function satisfying B1–B5 and Qk is an approximation
of Q such that Q ⊂ Qk ⊂ Qεk

.

We study the convergence of the iterates xk of this method under the
conditions1

(2) 0 < χk < χ̄ (χ̄ > 0 arbitrary), εk ≥ 0,

∞
∑

k=1

εk

χk
< ∞,

∞
∑

k=1

‖ek‖
χk

< ∞.

According to [7], Lemma 1, conditions B1, B2 and B5 ensure that for each
y ∈ intK

(3) dom ∂1Df (·, y) = intK,

and

∂1Df (x, y) =

{

∇f(x) −∇f(y) if x ∈ intK

∅ otherwise
(4)

(∂1Df denotes the partial subdifferential of Df ).

1Considering this method with e
k ≡ 0 instead of the last condition in (2), assumption

B3 can be replaced by Stand-B3, with minor and evident modifications in the convergence
analysis below.
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Moreover, the conditions A1, A2, B1, B2 and B5 imply that, for any e ∈ IRn,
y ∈ intK and χ > 0, the inclusion

e ∈ Q(x) + χ∂1Df (x, y)

has a unique solution in intK (see [7], Theorem 1).
Thus, the assumptions mentioned guarantee that for any sequences

{ek} ⊂ IRn and {χk}, χk > 0, there exists a sequence {xk} satisfying (1),
and {xk} ⊂ intK is a straightforward corollary of (3).

Lemma 3. Suppose that the sequence {(xk, ek)} fulfills recursion (1), that

{xk} ⊂ intK and that conditions A1–A3, B1–B3 and (2) are valid. Then

(i) {Df (x∗, xk)} is convergent for each x∗ ∈ SOL(Q,K);

(ii) {xk} is bounded;

(iii) lim
k→∞

Df (xk+1, xk) = 0.

Proof. According to (1) there exists qk+1 ∈ Qk(xk+1) such that

ek+1 = qk+1 + χk∇1Df (xk+1, xk).

From this equality and (4) we conclude that

(5)
〈

qk+1 + χk(∇f(xk+1) −∇f(xk)), x − xk+1
〉

≥ −‖ek+1‖‖x − xk+1‖

holds for all x ∈ K. Together with the obvious identity

(6)
Df (x, xk+1) − Df (x, xk)

= −Df (xk+1, xk) +
〈

∇f(xk) −∇f(xk+1), x − xk+1
〉

this yields

(7)

Df (x, xk+1) − Df (x, xk) ≤ −Df (xk+1, xk)

+
1

χk

〈

qk+1, x − xk+1
〉

+
‖ek+1‖

χk
‖x − xk+1‖, ∀x ∈ K.

Choose x∗ ∈ SOL(Q,K) and q∗ ∈ Q(x∗) satisfying

〈q∗, x − x∗〉 ≥ 0, ∀ x ∈ K.
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From the definition of Qε and the inclusions Q ⊂ Qk ⊂ Qεk
, one gets

(8) 〈qk+1 − q∗, x∗ − xk+1〉 ≤ εk.

Now, we take (7) with x := x∗ and insert there the following two estimates

〈qk+1, x∗ − xk+1〉 ≤ 〈q∗, x∗ − xk+1〉 + εk ≤ εk,

‖x∗ − xk+1‖ ≤ 1

α(x∗)

[

Df (x∗, xk+1) + c(x∗)
]

.

The first one is true because of (8) and xk+1 ∈ K, and the second one is a
consequence of B3. These insertions lead to

(9)

Df (x∗, xk+1) − Df (x∗, xk)

≤ −Df (xk+1, xk) +
δk

α(x∗)
Df (x∗, xk+1) + δk

(

1 +
c(x∗)

α(x∗)

)

,

where δk := χ−1
k max{‖ek+1‖, εk}.

Conditions (2) provide that δk

α(x∗) < 1
2 for k ≥ k0, k0 sufficiently large.

Therefore,

1 ≤
(

1 − δk

α(x∗)

)−1

≤
(

1 +
2δk

α(x∗)

)

< 2, ∀ k ≥ k0,

and (9) results in

(10)

Df (x∗, xk+1)

≤
(

1 + 2δk

α(x∗)

)

Df (x∗, xk) − Df (xk+1, xk) + 2δk

(

1 + c(x∗)
α(x∗)

)

.

Taking into account that Df is a non-negative function and
∑∞

k=1 δk < ∞,
Lemma 2.2.2 in [26], applied to (10), guarantees that {Df (x∗, xk)} converges
and

lim
k→∞

Df (xk+1, xk) = 0.

Now, condition B3 implies that the sequence {xk} is bounded.
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In the sequel, we make use of the following additional assumptions on the
operator Q.

A4 Q is the subdifferential of a proper convex, lower semi-continuous

function J ;

A5 (a) Q is paramonotone on K (for the definition and some properties,

see [15]),

(b) limk→∞ yk = ȳ ∈ K, qk ∈ Q(yk) implies that {qk} is a bounded

sequence.

If A4 is applied, we also suppose that Q ⊂ Qk ⊂ ∂εk
J, where ∂e denotes

the ε-subdifferential. Since the inclusion ∂εJ ⊂ (∂J)ε ≡ Qε is valid, no
alterations in the preceding part of the paper are needed.

Assumptions A4 and A5(a) are rather standard in Bregman-function-
based proximal methods. For some relaxation of A5(b) see [8, 13, 18] and
[30] and Subsection 3.1 below. A Bregman-function-based proximal method
for variational inequalities with non-paramonotone operators was studied
in [19].

Assuming A5, the following property (*) of a paramonotone operator
A on a set C is decisive (cf., [15]):

(*) If x∗ solves the variational inequality

(11) find x ∈ C, q ∈ A(x) : 〈q, y − x〉 ≥ 0, ∀ y ∈ C,

and for some x̄ ∈ C there exists z̄ ∈ A(x̄) with

〈z̄, x∗ − x̄〉 ≥ 0,

then x̄ is also a solution of (11).

Lemma 4. Let assumptions A1–A3, B1–B3, B5 and one of the assump-

tions A4 or A5 be satisfied. Then each cluster point of the sequence {xk},
generated by method (1)–(2), belongs to SOL(Q,K).

Proof. According to Lemma 3, the sequence {xk} is bounded, hence there
exists a convergent subsequence {xjk} with limk→∞ xjk = x̄. Since K is a
closed set and xk ∈ intK one gets x̄ ∈ K. Taking into account conclusion
(iii) of Lemma 3, the application of Lemma 1 with zk := xjk+1, yk := xjk ,
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yields limk→∞ xjk+1 = x̄. Moreover, using the identity (6) with x := x∗ ∈
SOL(Q,K), the relation

(12) lim
k→∞

χjk
〈∇f(xjk+1) −∇f(xjk), x∗ − xjk+1〉 = 0

follows immediately from Lemma 3 and χk ∈ (0, χ̄] for all k.

First, let us suppose that A4 is valid. Due to the convexity of the
function J and qk+1 ∈ Qk(xk+1) ⊂ ∂εk

J(xk+1), relation (5) considered for
x := x∗ and k := jk implies that

(13)
−J(xjk+1) + J(x∗) + χjk

〈∇f(xjk+1) −∇f(xjk), x∗ − xjk+1〉

≥ −‖ejk+1‖‖x∗ − xjk+1‖ − εjk
.

Passing to the limit in (13) for k → ∞, in view of (12), (2), χk ∈ (0, χ̄]
and the lower semi-continuity of J , we obtain J(x̄) ≤ J(x∗). Together with
x̄ ∈ K, x∗ ∈ SOL(Q,K), this yields

0 ∈ ∂ (J(x̄) + δ(x̄|K)) ,

where δ(·|K) is the indicator function of K. In view of assumption A2,
Theorem 23.8 in [27] provides x̄ ∈ SOL(Q,K).

Now, let us turn to the case when the operator Q possesses property A5.
Owing to the Brønsted-Rockafellar property of the ε-enlargement (cf., [9])
and the relation Q ⊂ Qk ⊂ Qεk

, there exist x̃jk+1 and q(x̃jk+1) ∈ Q(x̃jk+1)
such that

(14) ‖xjk+1 − x̃jk+1‖ ≤ √
εjk

, ‖qjk+1 − q(x̃jk+1)‖ ≤ √
εjk

, ∀ k.

Hence, limk→∞ x̃jk+1 = x̄, and taking into account A5(b) with yk := x̃jk+1,
both sequences {q(x̃jk+1)} and {qjk+1} are bounded. Together with the sec-
ond inequality in (14), this allows us to conclude, without loss of generality,
that

lim
k→∞

qjk+1 = q̄ and lim
k→∞

q(x̃jk+1) = q̄.

In turn, the maximal monotonicity of Q ensures q̄ ∈ Q(x̄).
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Thus, inserting x := x∗ ∈ SOL(Q,K) into (5) and passing to the limit for
k := jk, k → ∞, we infer from (12) and (2) that

〈q̄, x∗ − x̄〉 ≥ 0.

Finally, property (*) of the paramonotone Q provides x̄ ∈ SOL(Q,K).

Now, from {xk} ⊂ intK and Lemmata 2–4, the main convergence result
follows immediately.

Theorem 1. Let assumptions A1–A3, B1–B5 as well as one of the assump-

tions A4 or A5 be valid. Then the sequence {xk}, generated by method

(1)–(2), belongs to intK and converges to a solution of V I(Q,K).

3. Bregman functions with non-polyhedral zones

Bregman functions with zone intK are of main interest in applications. Ex-
actly in this case we deal with interior proximal methods. However, as it
was already mentioned, up to now such Bregman functions have been con-
structed only for linearly constrained sets K or when K is a ball. The
corresponding convergence results are not applicable, for instance, if K is
the intersection of a half-space and a ball. The reason is that neither condi-
tion B4(i) nor B4(ii) considered separately2 is guaranteed in this case (see
Example 2 in Appendix).

In this section, the application of methods (1)–(2) is studied for the case

(15) K := {x ∈ IRn : gi(x) ≤ 0, i ∈ I}, I = I1 ∪ I2,

where I is a finite index set, gi (i ∈ I1) are affine functions, gi (i ∈ I2) are
convex continuously differentiable functions and maxi∈I2 gi is supposed to
be strictly convex on K. Further, Slater’s condition

(16) ∃ x̃ : gi(x̃) < 0 ∀ i ∈ I

is supposed to be valid.
The following statement clarifies the choice of Bregman functions with

zone intK.

2Usually, for linearly constrained K condition Stand-B4 (i.e., B4(i)) is supposed. In
the case when K is a ball, instead of Stand-B4 condition B4(ii) was introduced in [11].
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Theorem 2. Let ϕ be a strictly convex, continuous and increasing function

with domϕ = (−∞, 0], and ϕ be continuously differentiable on (−∞, 0).
Moreover, let

(17) lim
t↑0

ϕ′(t)t = 0,

(18) lim
t↑0

ϕ′(t) = +∞.

Then the function3

(19) h(x) :=
∑

i∈I

ϕ(gi(x)) + θ

n
∑

j=1

|xj |γ , γ > 1 is fixed,

with θ := 0 if K is certainly bounded and θ := 1 if the boundedness of K is

unknown, satisfies the conditions B1–B5.

Proof. Step by step we check whether the assumptions B1–B5 are satisfied
for the function h to be a Bregman function.

• Since ϕ is a convex increasing function, the convexity of the composition
ϕ◦gi (and hence, of h) on the set K is guaranteed. Thus, if θ = 1, the strict
convexity of h is evident.

But, if θ = 0 (i.e., K is bounded), we have to consider two cases.

(a) I2 6= ∅.
Assume that

∑

i∈I2
ϕ ◦ gi is not strictly convex on K. Then one can choose

points x1, x2 ∈ K, x1 6= x2, and λ ∈ (0, 1) such that

∑

i∈I2

ϕ(gi(λx1 + (1 − λ)x2)) = λ
∑

i∈I2

ϕ(gi(x
1)) + (1 − λ)

∑

i∈I2

ϕ(gi(x
2)).

Since each function ϕ ◦ gi is convex, the last equality means that for each
i ∈ I2,

(20) ϕ(gi(λx1 + (1 − λ)x2)) = λϕ(gi(x
1)) + (1 − λ)ϕ(gi(x

2))

3As it will be clear from the proof of this theorem, instead of
∑n

i=1
|xj |

γ in (19) one
can take any strictly convex and continuously differentiable function guaranteeing the
fulfilment of B3 for h.
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is valid. Since gi is convex, ϕ is increasing and x1, x2 ∈ K, we obtain

(21) ϕ(λgi(x
1) + (1 − λ)gi(x

2)) ≥ λϕ(gi(x
1)) + (1 − λ)ϕ(gi(x

2)), i ∈ I2.

The strict convexity of ϕ implies, that only the equality is possible in (21),
and gi(x

1) = gi(x
2) holds for each i ∈ I2. Finally, in view of (20) and the

increase of ϕ one gets for i ∈ I2

gi(λx1 + (1 − λ)x2) = λgi(x
1) + (1 − λ)gi(x

2),

which contradicts the strict convexity of maxi∈I2 gi.

(b) I2 = ∅, i.e., all functions gi are affine:

gi(x) := 〈ai, x〉 − bi, i ∈ I1 = I.

Then, due to Slater’s condition and the boundedness of K, the rank of the
matrix A = {ai}i∈I equals n. Using this fact, the strict convexity of the
function h can be easily established following [24].

Thus, taking into account also the differentiability properties of gi

and ϕ, assumptions B1 and B2 for the function h are always valid.

• Of course, assumption B3 is guaranteed if K is a bounded set. In the
case of an unbounded K, B3 is evident if γ = 2 in (19); for arbitrary γ > 1
condition B3 follows from Proposition 2 in [20] and

Dh(x, y) ≥ h0(x) − h0(y) − 〈∇h0(y), x − y〉,

(where h0(x) :=
∑n

i=1 |xi|γ).

• Now, we check the validity of assumption B4. Denote

I<(y) := {i : gi(y) < 0}, I=(y) := {i : gi(y) = 0},

and let {zk} ⊂ intK, limk→∞ zk = z.

(a) At first, suppose that I<(z) ⊃ I2. For i ∈ I<(z), one gets

lim
k→∞

gi(z
k) = gi(z) < 0 and lim

k→∞
〈∇gi(z

k), z − zk〉 = 0,
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whereas for i ∈ I=(z) we have limk→∞ gi(z
k) = gi(z) = 0, bi = 〈ai, z〉. Thus,

for i ∈ I=(z),

lim
k→∞

ϕ′(〈ai, zk〉 − bi)〈ai, z − zk〉 = lim
k→∞

ϕ′(〈ai, zk − z〉)〈ai, z − zk〉 = 0

follows from 〈ai, zk−z〉 → 0 and (17). Using these relations and the identity

Dh(x, y) = h(x) − h(y) −
∑

i∈I=(y)

ϕ′(〈ai, y〉 − bi)〈ai, x − y〉

−
∑

i∈I<(y)

ϕ′(gi(y))〈∇gi(y), x − y〉 − θ〈∇h0(y), x − y〉,

one can easily conclude that limk→∞ Dh(z, zk) = 0.

(b) Now, let gi0(z) = 0 be valid for some i0 ∈ I2. Denote

I2(y) := {i ∈ I2 : gi(y) = max
j∈I2

gj(y)}

and take z̄ ∈ K, z̄ 6= z. In view of the convexity of the functions ϕ ◦ gi and
h0 the following holds

(22) Dh(z̄, zk) ≥ ϕ(gi0(z̄)) − ϕ(gi0(z
k)) − ϕ′(gi0(z

k))〈∇gi0(z
k), z̄ − zk〉.

Obviously, relation (18) implies

(23) lim
k→∞

ϕ′(gi0(z
k)) = +∞,

whereas

(24) lim
k→∞

〈∇gi0(z
k), z̄ − zk〉 = 〈∇gi0(z), z̄ − z〉.

But, using the structure of the subdifferential of a max-function and the
strict convexity of maxi∈I2 gi, we obtain

max
i∈I2

gi(z̄) − max
i∈I2

gi(z) > 〈∇gj(z), z̄ − z〉, ∀ j ∈ I2(z).

Since z̄, z ∈ K and gi0(z) = 0, the last inequality yields

(25) 〈∇gj(z), z̄ − z〉 < 0, j ∈ I2(z).
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Relations (22)–(25) and the continuity of ϕ ◦ gi0 ensure that

(26) lim
k→∞

Dh(z̄, zk) = +∞.

In fact, we have proved a stronger property than B4(ii): relation (26) holds
for each z̄ ∈ K, z̄ 6= z, whereas B4(ii) supposes

limk→∞Dh(z̄, zk) = +∞ if z̄ ∈ bdK, z̄ 6= z.

• To prove the fulfillment of assumption B5, we use Theorem 4.5 in [5],
which states, in particular, that

For a function f with properties B1 and B2, the boundary coercivity im-

plies zone coercivity if K is bounded or the super-coercivity condition

limx∈K, ‖x‖→∞
f(x)
‖x‖ = +∞ is valid.

Let z ∈ bdK, {zk} ∈ intK, limk→∞ zk = z and x ∈ intK. Then

lim
k→∞

〈∇gi(z
k), x − zk〉 = 〈∇gi(z), x − z〉,

and for i ∈ I=(z) the relations

〈∇gi(z), x − z〉 < 0, lim
k→∞

ϕ′(gi(z
k)) = +∞

are obvious. Hence, if i ∈ I=(z), then

(27) lim
k→∞

ϕ′(gi(z
k))〈∇gi(z

k), x − zk〉 = −∞,

whereas for i ∈ J<(z) it holds

(28) lim
k→∞

ϕ′(gi(z
k))〈∇gi(z

k), x − zk〉 = ϕ′(gi(z))〈∇gi(z), x − z〉.

From (27) and (28) and the continuous differentiability of the function h0,
we immediately conclude that the function h is boundary coercive, hence
according to Theorem 4.5 in [5], h satisfies assumption B5.

Particular functions satisfying the conditions of Theorem 2 are

(29) ϕ(t) = −(−t)p, p ∈ (0, 1) arbitrarily chosen,
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(30) ϕ(t) =











−t ln(−t) + t if − 1

2
≤ t ≤ 0

− ln 2 ln
(

− t +
1

2

)

− 1

2
ln 2 − 1

2
if t < −1

2

,

where by convention ϕ(0) = 0.
The principal idea for constructing function (30) consists in the follow-

ing: Constraints, which turn out to be active at the limit point, are handled
mainly by the first term in ϕ, whereas those which become inactive at the
limit point, are observed by both terms of ϕ.

Combining Theorems 1 and 2 we immediately obtain the following
result.

Theorem 3. Let the set K be described by (15), (16) and the function h be

defined as in Theorem 2 (in particular, ϕ of form (29) or (30) can be chosen).
Moreover, suppose that V I(Q,K) satisfies assumptions A1–A3 and one of

the assumptions A4 or A5.
Then, the sequence {xk}, generated by method (1)–(2) with the use of

function h (in place of f), belongs to intK and converges to x ∈ SOL(Q,K).

Corollary 1. Suppose that the hypotheses of Theorem 3 are fulfilled. If

V I(Q,K) has more than one solution, then the sequence {xk}, generated by

method (1)–(2) with Bregman function (19), converges to a solution x such

that gi(x) < 0, i ∈ I2.

Indeed, the opposite assumption that gi(x) = 0 holds for some i ∈ I2 leads
immediately to a contradiction between the statement (i) of Lemma 3 and
relation (26) given with zk := xk and z̄ ∈ SOL(Q,K), z̄ 6= x.

Remark 3. If functions gi in (15) satisfy

gi(x) ≥ −1 ∀ x ∈ K, ∀ i ∈ I2,

one can quite similarly prove that the function hl : K → IR, defined by

(31) hl(x) :=
∑

i∈I

[(−gi(x)) ln(−gi(x)) + gi(x)] + θ

n
∑

j=1

|xj |γ

(with θ, γ as in (19)), possesses properties B1–B5, too. �
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3.1. Embedding of the original Bregman-function-based methods

Let us analyze the original proof technique of Bregman-function-based prox-
imal methods destined to variational inequalities on polyhedral sets. Denote
by D a distance function and by v` an iterate of such a method. To our
knowledge, original convergence results for these methods establish con-
vergence of the sequence {D(x, v`)} for each solution x without the use of
assumption Stand-B4. Hence, for interior proximal methods involving stan-

dard requirements on Bregman functions (see, in particular, [8, 13, 30]), the
original convergence analysis can be preserved (with minor alterations in
the final stage only) if we replace Stand-B4 by B4 with z̄ ∈ K instead of
z̄ ∈ bdK in B4(ii)4.

Indeed, let a subsequence {v`k} of {v`} with limk→∞ v`k = v be chosen
such that there exists x ∈ SOL(Q,K), x 6= v (if this is impossible, clearly
lim`→∞ v` = v and SOL(Q,K) = {v}). The convergence of {D(x, v`)}
implies that condition B4(ii) with z̄ := x, z := v, zk := vlk is violated.
Hence, B4(i) is valid, i.e., limk→∞ D(v, v`k ) = 0, and B4 turns into Stand-
B4. Referring now to the original convergence results, we immediately
conclude that v ∈ SOL(Q,K). Then, convergence of {D(v, v`)} implies
lim`→∞ D(v, v`) = 0 and Theorem 2.4 in [30] yields lim`→∞ v` = v.

On this way, inserting the function (19) (for instance, with ϕ defined
by (29) or (30)) in methods where Bregman functions are described exactly
by standard conditions (see the note after Remark 1), one can extend these
methods to solve V I(Q,K) on non-polyhedral sets K given by (15), (16).

Return to the convergence analysis in Section 2. For method (1)–(2)
without an approximation of the operator Q, i.e. with Qk ≡ Q, the same
arguments as given just above permit us to weaken assumption A5, replacing
A5(b) by the condition that Q is a pseudo-monotone operator in the sense of
Brézis-Lions5. With this alteration, the proof of Lemma 4 can be performed
quite similarly to the proof of the case D3 in Lemma 3 of [18].

Moreover, for the exact version of method (1)–(2), with Qk ≡ Q,
ek ≡ 0, assumption A5(b) can be omitted at all according to the analy-
sis of Solodov and Svaiter [30].

4Let us recall that, for K given by (15), (16), the conditions of Theorem 2 ensure the
fulfillment of the so modified assumption B4.

5There are several notions of pseudo-monotonicity. This notion was introduced in [6]
and [22] for single-valued operators, for multi-valued operators see for instance [25].
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In Appendix, we give examples showing that

◦ although assumption B4 is valid for the function h defined by (19), (29),
each of the conditions B4(i) and B4(ii) itself can be violated (of course,
it means, in particular, that Stand-B4 is not satisfied, in general);

◦ assumption B4 can be violated for this function h if the function maxi∈I2 gi

is not strictly convex.

3.2. On entropy-like and logarithmic-quadratic proximal methods

We have tried to extend in a similar manner entropy-like and logarithmic-
quadratic proximal methods (see [1, 3, 4, 31]). Applications of these methods
to the dual of linearly constrained programs or to variational inequalities
on polyhedral convex sets provide attractive properties of subproblems (for
instance, C∞ multiplier methods with bounded Hessians are constructed in
this way in [3]).

However, the basic requirements on the kernel functions in these meth-
ods seem to be not appropriate for such an extension. Indeed, in case
K := IRm

+ the corresponding distance functions have the form

(32) d(u, v) =

m
∑

i=1

vα
i

[

ϕ

(

ui

vi

)

+ β

(

ui

vi
− 1

)2
]

(α := 1, β := 0 in entropy-like methods and α := 2, β > 0 in logarithmic-
quadratic methods). If

K := {x ∈ IRn : gi(x) := 〈ai, x〉 − bi ≤ 0, i = 1, . . . ,m},

the distance D is given by

(33) D(x, y) := d(−g(x),−g(y)), g = (g1, . . . , gm).

As to the kernel function ϕ, it is supposed, in particular, that domϕ ⊆
[0,+∞), ϕ is twice continuously differentiable on (0,+∞) and strictly convex
on its domain, and

(34) ϕ(1) = ϕ′(1) = 0, ϕ′′(1) > 0.

Already these conditions enforce that the function D(·, y) defined by (33)
is, in general, nonconvex for some y ∈ intK, if at least one function gi is not
affine.
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Example 1. Let the kernel function ϕ with the properties mentioned above
be fixed, and K := {x ∈ IR1 : g(x) ≤ 0}, where the choice of the convex and
sufficiently smooth function g : IR1 → IR1 will be specified below. According
to (32), (33)

D(x, y) = (−g(y))α

[

ϕ

(

g(x)

g(y)

)

+
β

2

(

g(x)

g(y)
− 1

)2
]

.

Assume first that ϕ( 1
2 ) ≤ ϕ(3

2 ) and take g with values

g(x1) = −1

2
, g(1) = −3

2
, g(x2) = −1,

where x1, x2 are given points, such that (x1 − 1)(x2 − 1) < 0. Then, for
y = x2 one gets

D(x1, y) = ϕ

(

1

2

)

+
β

8
, D(1, y) = ϕ

(

3

2

)

+
β

8
, D(x2, y) = 0.

Because of ϕ( 1
2 ) ≤ ϕ(3

2 ) and ϕ(t) ≥ 0 ∀ t ∈ domϕ (the last inequality follows
from the convexity of ϕ and (34)), we conclude that the functions D(·, y)
and ϕ ◦ (−g) are not convex.

But, if ϕ( 1
2 ) > ϕ(3

2 ), the same conclusion holds true with y = x1 and

g : g(x1) = −1, g(1) = −1

2
, g(x2) = −3

2
.

4. Appendix

The following example shows that, although assumption B4 is valid for the
function h defined by (19), (29), each of the conditions B4(i) and B4(ii) itself
can be violated.

Example 2. Let K := {x ∈ IR2 : gi(x) ≤ 0, i = 1, 2}, where

g1(x) := x2
1 + x2

2 − 1, g2(x) := −x1 + x2 − 1.

According to (19), (29), let h(x) = h1(x) + h2(x), with

h1(x) := −(1 − x2
1 − x2

2)
p, h2(x) := −(1 + x1 − x2)

p, p ∈ (0, 1).
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Choose the sequence {zk}, zk = (zk
1 , zk

2 ), with

zk
1 :=

(

1 − σ
1

1−p

k − (1 − σ
1

1−p

k − σk)
2

)1/2

,

zk
2 := 1 − σ

1

1−p

k − σk, where σk > 0, lim
k→∞

σk = 0.

Obviously, zk ∈ intK for a large k (k ≥ k0), and limk→∞ zk = z = (0, 1) ∈
bdK. Taking into account the convexity of h1 and h2 and limk→∞(h1(z) −
h1(z

k)) = 0, condition B4(i) should imply

lim
k→∞

(−g1(z
k))p−1〈∇g1(z

k), z − zk〉 = 0.

But, a straightforward calculation yields

(−g1(z
k))p−1〈∇g1(z

k), z − zk〉 = −2, ∀ k ≥ k0.

Now, choose z̄ = (0, 1) and zk = (zk
1 , zk

2 ) with

zk
1 = −1

2
+ σk, zk

2 =
1

2
, where, as before, σk > 0, lim

k→∞
σk = 0.

Then, because of g1(z) < 0 for z = limk→∞ zk = (−1
2 , 1

2 ), the function

d1 : v 7→ h1(z̄) − h1(v) − 〈∇h1(v), z̄ − v〉

is continuous in a neighborhood of z, hence limk→∞ d1(z
k) = d1(z) =

(1
2 )p < ∞. But, with

d2 : v 7→ h2(z̄) − h2(v) − 〈∇h2(v), z̄ − v〉

we obtain

d2(z
k) = (1 − p)

(

1 + zk
1 − zk

2

)p
= (1 − p)σp

k → 0 as k → ∞.

Finally,

lim
k→∞

Dh(z̄, zk) = lim
k→∞

(

d1(z
k) + d2(z

k)
)

= (
1

2
)p < ∞,

i.e., condition B4(ii) is not valid, too. �
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The next example indicates that assumption B4 may be violated for function
(19) if the function maxi∈I2 gi is not strictly convex.

Example 3. Let K := {x ∈ IR4 : x2
1 + x2

2 + x3 + x4 ≤ 1}.
With g(x) := x2

1 + x2
2 + x3 + x4 − 1, take

h(x) := −(−g(x))p +
4

∑

j=1

x2
j , p ∈ (0, 1),

and {zk} such that

if k = 2l − 1: zk
1 =

(

1 − σ
1

1−p

k − (1 − σ
1

1−p

k − σk)
2

)1/2

,

zk
2 = 1 − σ

1

1−p

k − σk, zk
3 = zk

4 = 0;

if k = 2l: zk
1 = 0, zk

2 = 1, zk
3 = −σk, zk

4 = 0, σk > 0, lim
k→∞

σk = 0.

Then z = limk→∞ zk = (0, 1, 0, 0) and for a large l

(−g(zk))p−1〈∇g(zk), z − zk〉 = −2, if k = 2l − 1.

But, choosing z̄ := (0, 1,−1, 1), one gets

(−g(zk))p−1〈∇g(zk), z̄ − zk〉 = σ
p
k, if k = 2l.

Thus, neither B4(i) nor B4(ii) is valid. �
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