ArticleOriginal scientific text
Title
Error estimates for finite element approximations of elliptic control problems
Authors 1, 2, 3
Affiliations
- Friedrich-Schiller-Universität Jena, Institute for Applied Mathematics, D-07740 Jena, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Applied Mathematics, D-91058 Erlangen, Germany
- Johann Radon Institute for Computational and Applied, Mathematics (RICAM), A-4040 Linz, Austria
Abstract
We investigate finite element approximations of one-dimensional elliptic control problems. For semidiscretizations and full discretizations with piecewise constant controls we derive error estimates in the maximum norm.
Keywords
Linear quadratic optimal control problems, elliptic equations, finite element approximations, error estimates
Bibliography
- J.P. Aubin, Behaviour of the error of the approximate solution of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods, Ann. Scoula Norm. Sup. Pisa 21 (1967), 599-637.
- N. Bräutigam, Diskretisierung elliptischer Steuerungsprobleme, Ph.D. Thesis, Jena 2006.
- N. Bräutigam, Discretization of Elliptic Control Problems by Finite Elements, Technical Report, Jena 2006.
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland 1987.
- C. Groß mann and H.-G. Roos, Numerik partieller Differentialgleichungen, Teubner 2005.
- M. Hinze, A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case, Computational Optimization and Applications 30 (2005), 45-61.
- K. Malanowski, Convergence of Approximations vs. Regularity of Solutions for Convex, Control-Constrained Optimal Control Problems, Appl. Math. Optim. 8 (1981), 69-95.
- C. Meyer and A. Rösch, Superconvergence Properties of Optimal Control Problems, SIAM J. Contr. Opt. 43 (2004), 970-985.
- J.A. Nitsche, Ein Kriterium für die Quasioptimalität des Ritzschen Verfahrens, Numerische Mathematk 11 (1968), 346-348.
- B. Sendov and V.A. Popov, The Averaged Moduli of Smoothness, Wiley-Interscience 1988.
- F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen, Vieweg 2005.