CONSTANT SELECTIONS
AND MINIMAX INEQUALITIES

MIRCEA BALAJ

Department of Mathematics
University of Oradea
410087, Oradea, ROMANIA

e-mail: mbalaj@uoradea.ro

Abstract

In this paper, we establish two constant selection theorems for a map whose dual is upper or lower semicontinuous. As applications, matching theorems, analytic alternatives, and minimax inequalities are obtained.

Keywords: map, constant selection, acyclic map, matching theorem, analytic alternative, minimax inequality.

2000 Mathematics Subject Classification: 54H25, 54C60, 49J35, 52A07.

1. Introduction

Let X and Y be two nonempty sets. To a map $T : X \to Y$ are associated other three maps $T^c : X \to Y$, the complement of T, $T^\ominus : Y \to X$, the (lower) inverse of T and $T^* : Y \to X$ the dual of T defined by

$$T^c(x) = Y \setminus T(x), T^\ominus(y) = \{x \in X : y \in T(x)\} \quad \text{and} \quad T^*(y) = X \setminus T^\ominus(y).$$

If $y_0 \in \bigcap_{x \in X} T(x)$, then the function $t : X \to Y$ defined by $t(x) = y_0$ is a constant selection of T, that is $t(x) \in T(x)$, for all $x \in X$.

It is worth underlining the following straightforward fact: a map $T : X \to Y$ has a constant selection (that is, $\bigcap_{x \in X} T(x) \neq \emptyset$) if and only if $T^*(y) = \emptyset$ for at least $y \in Y$.
The first and the main motivation of the study on the existence of a constant selection comes from the minimax theory. More precisely, if $f, g : X \times Y \to \mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$ are two functions, then one can see that $\inf_{y \in Y} \sup_{x \in X} g(x, y) \leq \sup_{x \in X} \inf_{y \in Y} f(x, y)$ if and only if the map $G_{\lambda} : X \to Y$ defined by $G_{\lambda}(x) = \{y \in Y : g(x, y) < \lambda\}$ has a constant selection for each $\lambda > \sup_{x \in X} \inf_{y \in Y} f(x, y)$.

An additional motivation comes from mathematical economics where $T : X \to X$ represents a preference relation on a consumption set X. There are two possible interpretations for T. As a large preference relation, $y \in T(x)$ is then interpreted as y is preferred or equivalent to x, in which case it is natural to assume that $x \in T(x)$, or as a strict preference relation $y \in T(x)$ is then interpreted as y is strictly preferred to x, in which case it is natural to assume that $x \notin T(x)$. In the first case, if $y_0 \in \bigcap_{x \in X} T(x)$, then y_0 is a largest element with respect to T. In the other case, if $x_0 \in \bigcap_{y \in X} T^*(y)$, then x_0 is a maximal element with respect to T.

In this paper, we obtain two constant selection theorems for a map S whose dual S^* is upper continuous (Theorem 1), respectively lower semi-continuous (Theorem 2). Since in both theorems the map S is supposed generalized KKM with respect to other map, Theorems 1 and 2 could be considered as well as KKM type theorems. As applications we obtain in Section 4 two matching theorems of Ky Fan type [10] and, in Section 5, several analytic alternatives and some very general minimax inequalities.

2. Preliminaries

If X is a subset of a topological vector space we denote by X, $\text{co} \ X$, $\overline{\text{co}} \ X$, the closure, convex hull, closed convex hull of X, respectively. Given a map $T : Y \to X$, the maps $\text{co} \ T : Y \to \text{co} \ X$, $\overline{\text{co}} \ T : Y \to \overline{\text{co}} \ X$ are defined by $(\text{co} \ T)(y) = \text{co} (T(y))$, $(\overline{\text{co}} \ T)(y) = \overline{\text{co}} (T(y))$ for all $y \in Y$.

Let $T : X \to Y$ be a map. As usual the set $\{(x, y) \in X \times Y : y \in T(x)\}$ is called the graph of T. For $A \subset X$ and $B \subset Y$ let $T(A) = \bigcup_{x \in A} T(x)$ and $T^{-}(B) = \{x \in X : T(x) \cap B \neq \emptyset\}$. Given two maps $T : X \to Y$ and $S : Y \to Z$ the composite $S \circ T : X \to Z$ is defined by $(S \circ T)(x) = S(T(x)) = \bigcup \{S(y) : y \in T(x)\}$.

For topological spaces X and Y a map $T : X \to Y$ is said to be: upper semicontinuous (u.s.c.) if for any closed set $B \subset Y$ the set $T^{-}(B)$ is closed.
in X; lower semicontinuous (l.s.c.) if for any open set $B \subset Y$ the set $T^{-1}(B)$ is open in X; compact if $T(X)$ is contained in a compact subset of Y.

The following lemma collects known facts about u.s.c. maps [2].

Lemma 1.

(i) A composite of u.s.c. is u.s.c.

(ii) If Y is compact and $T : X \to Y$ has closed graph, then T is u.s.c. with compact values.

(iii) If T is u.s.c. with compact values, then $T(K)$ is compact whenever $K \subset X$ is compact.

A nonempty topological space is called acyclic if all its reduced Čech homology groups over rationals are trivial. For nonempty sets in topological vector spaces, convex \Rightarrow star-shaped \Rightarrow contractible \Rightarrow acyclic \Rightarrow connected and not conversely.

For topological spaces X and Y, $T : X \to Y$ is called an acyclic map whenever T is u.s.c. with compact acyclic values. Let $\mathcal{V}(X,Y)$ be the class of all acyclic maps $T : X \to Y$ and $\mathcal{V}_c(X,Y)$ all finite compositions of acyclic maps, where the intermediate spaces are arbitrary topological spaces. If Y is a convex subset of a topological vector space, let $\mathcal{K}(X,Y)$ be the set of all Kakutani maps $T : X \to Y$ (i.e. u.s.c. map with nonempty compact convex values). Obviously, $\mathcal{K}(X,Y) \subset \mathcal{V}(X,Y)$.

Let X be a convex subset of a vector space and Y be a nonempty set. If $S, T : X \to Y$ are two maps such that

$$T(coA) \subset S(A)$$

for each nonempty finite subset A of X,

then S is said to be generalized KKM w.r.t. T [6].

From now all topological spaces will be assumed Hausdorff. Throughout this paper, a real locally convex Hausdorff topological vector space is abbreviated as l.c.s.

3. **Constant selections**

We proceed the main theorems of this section by some auxiliary results. The following lemma is Theorem A in [23]. More general fixed point theorems (for admissible maps in the sense of Górniewicz) can be found in [1, 7].
Lemma 2. Let \(X\) be a nonempty convex subset of a l.c.s. and \(H \in \mathcal{V}_c(X,X)\). If \(H\) is compact, then \(H\) has a fixed point \(x_0 \in X\); that is \(x_0 \in H(x_0)\).

The next lemma is well known. For instance it is a particular form of Proposition 2 in [15] and of Proposition 3.1 in [24].

Lemma 3. Let \(X\) be a convex subset of a vector space and \(Y\) be a nonempty set. If \(S,T : X \to Y\) are two maps, then the following statements are equivalent:

(i) \(S\) is a generalized KKM map w.r.t. \(T\).

(ii) \(coS^*(y) \subseteq T^*(y)\) for all \(y \in Y\).

We need also the following

Lemma 4. Let \(X\) be a topological space and \(Y\) be a nonempty convex set in a l.c.s. \(E\). Let \(T : X \to Y\) be a u.s.c. map with nonempty values such that \(coT(x)\) is compact for each \(x \in X\). Then the map \(coT\) is u.s.c.

Proof. Let \(V\) be a basis of open convex symmetric neighborhoods of the origin of \(E\). Let \(x_0 \in X\) arbitrarily fixed and \(G\) be an open subset of \(Y\) such that \(coT(x_0) \subset G\). We prove that for some \(V \in \mathcal{V}\)

\[(1)\quad coT(x_0) + V \subset G.\]

Otherwise, for each \(V \in \mathcal{V}\) there exists a point \(y_V \in coT(x_0)\) such that \((y_V + V) \cap (E \setminus G) \neq \emptyset\). Since \(V\) is symmetric, we infer that

\[(2)\quad y_V \in (E \setminus G) + V.\]

Since \((y_V)\) is a net in the compact \(coT(x_0)\) we may suppose that \((y_V)\) converges to a point \(y_0 \in coT(x_0)\). From (2) we get \(y_0 \in E \setminus G = E \setminus G\), hence \(y_0 \in coT(x_0) \cap (E \setminus G)\); this contradicts \(coT(x_0) \subset G\).

Let \(V \in \mathcal{V}\) for which (1) holds and \(U \in \mathcal{V}\) such that \(U \subset V\). Since \(T\) is u.s.c. and \(T(x_0)\) is contained in the open set \(coT(x_0) + U\), there exists a neighborhood \(W\) of \(x_0\) such that \(T(x) \subset coT(x_0) + U\), for all \(x \in W\). The set \(coT(x_0) + U\) is convex, hence for all \(x \in W\) we have \(coT(x) \subset coT(x_0) + U\), whence

\[coT(x) \subset coT(x_0) + U = coT(x_0) + U \subset coT(x_0) + V \subset G.\]

Thus, the map \(coT\) is u.s.c.
A particular case of Lemma 4 (when E is a Banach space) appears in [2].

Theorem 1. Let X be a nonempty convex set in a l.c.s. and Y be a topological space. Suppose that either X or Y is compact. Let $F, S, T : X \to Y$ be three maps satisfying the following conditions:

1. $F(x) \subset T(x)$ for each $x \in X$;
2. $F \in \mathcal{V}_c(X, Y)$;
3. S^* is u.s.c.;
4. T^* has compact values;
5. S is a generalized KKM map w.r.t. T.

Then $\bigcap_{x \in X} S(x) \neq \emptyset$.

Proof. Suppose that $\bigcap_{x \in X} S(x) = \emptyset$. This means that the map S^* has nonempty values. By (1.5) and Lemma 3, for each $y \in Y$, $co S^*(y) \subset T^*(y)$. Since $T^*(y)$ is compact, $co S^*(y)$ is a compact subset of $T^*(y)$. By Lemma 4, the map $co S^*$ is u.s.c., hence $co S^* \in \mathcal{K}(Y, X) \subset \mathcal{V}(Y, X)$.

Let us consider the map $H = co S^* \circ F \in \mathcal{V}_c(X, X)$. Lemma 3 is applicable as soon as we prove that the map H is compact. Clearly, this happens if X is compact. When Y is compact, since $co S^*$ is u.s.c. map with compact values, by Lemma 1(iii), $co S^*(Y)$ is compact. Since $H(X) \subset co S^*(Y)$, H is a compact map.

By Lemma 3, H has a fixed point. This implies that there exist $x_0 \in X$ and $y_0 \in Y$ such that $y_0 \in F(x_0) \subset T(x_0)$ and $x_0 \in co S^*(y_0) \subset T^*(y_0)$; a contradiction.

Theorem 2. Let X be a nonempty metrizable convex set in a l.c.s. and Y be a topological space. Suppose that either Y is compact, or Y is paracompact and X is compact. Let $F, S, T : X \to Y$, be three maps satisfying conditions (1.1), (1.2), (1.4) and (1.5) in Theorem 1 and

1. S^* is l.s.c.

Then $\bigcap_{x \in X} S(x)$ is nonempty.

Proof. Suppose that $\bigcap_{x \in X} S(x) = \emptyset$. Then S^* is a l.s.c. map with nonempty values. By Propositions 2.3 and 2.6 in [17] the map $co S^*$ is l.s.c. As in the previous proof, for each $y \in Y$, $co S^*(y) \subset T^*(y)$ and obviously, $co S^*(y)$ is nonempty and complete. By Theorem 1.1 in Michael [18],...
there exists a u.s.c map \(R : Y \to X \) with nonempty values such that \(R(y) \subseteq \overline{\ker} S^*(y) \) for all \(y \in Y \). For each \(y \in Y \) we have

\[
\co R(y) \subseteq \overline{\ker} S^*(y) \subseteq T^*(y).
\]

Consider the map \(S_1 = R^* \). Then \(S_1^* = R \) is u.s.c. Since \(R \) has nonempty values.

\[
\bigcap_{x \in X} S_1(x) = \emptyset.
\]

By (3) and Lemma 3, \(S_1 \) is a generalized KKM map w.r.t. \(T \). Theorem 1 applied to the maps \(S_1, F, T \) leads to \(\bigcap_{x \in X} S_1(x) \neq \emptyset \). This contradicts (4) and the proof is complete.

4. Matching theorems

In this section we obtain two Ky Fan type matching theorems [10].

Theorem 3. Let \(X \) be a nonempty convex set in a l.c.s. and \(Y \) be a topological space. Let \(\{B_i : i \in I\} \) be a closed covering of \(X \) and \(\{x_i : i \in I\} \) a family of points of \(X \), both indexed by a finite set \(I \). If \(F \in \mathcal{N}_c(X,Y) \) and \(S, T : X \to Y \) are two maps satisfying:

1. \(S(X) = Y \);
2. \(S^* \) is u.s.c.;
3. \(T^* \) has compact values;
4. \(S^* \) is a generalized KKM map w.r.t. \(T^* \),

then, there exists a nonempty subset \(J \) of \(I \) such that

\[
F(\co \{x_i : i \in J\}) \cap T \left(\bigcap \{B_i : i \in J\} \right) \neq \emptyset.
\]

Proof. For each \(x \in X \) let \(I(x) = \{i \in I : x \in B_i\} \). Then \(I(x) \neq \emptyset \) for each \(x \in X \), since \(\{B_i \} \) covers \(X \). Define the map \(H : X \to X \) by

\[
H(x) = \overline{\co} \{x_i : i \in I(x)\}, \text{ for each } x \in X.
\]

It is clear that \(H(x) \) is a nonempty compact convex subset of \(X \). For each \(x \in X \), let \(U(x) = X \setminus \bigcup \{B_i : i \notin I(x)\} \). Then \(U(x) \) is an open neighborhood
of \(x \) and, if \(z \in U(x) \), then \(H(z) \subset H(x) \). This shows that \(H \) is u.s.c., hence \(H \in \mathbb{K}(X, X) \). Define the maps \(F_1 : X \to Y \), \(S_1 : X \to Y \), and \(T_1 : X \to Y \) by \(F_1 = F \circ H \), \(S_1 = S^c \), \(T_1 = T^c \). From the hypotheses it readily follows that the maps \(F_1, S_1, T_1 \) satisfy conditions (1.2), (1.3), (1.4) and (1.5) imposed on the maps \(F, S, T \) in Theorem 1 but, by (3.1), \(\bigcap S_1(x) = \emptyset \), hence the conclusion of Theorem 1 does not hold. Consequently, for some \(x_0 \in X \), \(F_1(x_0) \not\subset T_1(x_0) \) or, equivalently,

\[
F\left(\text{co} \{ x_i : i \in I(x_0) \} \right) \cap T(x_0) \neq \emptyset.
\]

Since \(x_0 \in \bigcap \{ B_i : i \in I(x_0) \} \), putting \(J = I(x_0) \) we infer that

\[
F\left(\text{co} \{ x_i : i \in J \} \right) \cap T\left(\bigcap \{ B_i : i \in J \} \right) \neq \emptyset.
\]

Remark 1. It is easy to check that condition (3.4) is equivalent to the following

\[
\bigcap_{x \in A} S(x) \subset \bigcap_{x \in \text{co} A} T(x), \text{ for each nonempty finite subset } A \subset X.
\]

In a similar manner, using as argument Theorem 2 instead of Theorem 1, we can prove

Theorem 4. Let \(X \) be a nonempty metrizable convex set in a l.c.s. and \(Y \) be a topological space. Assume that either \(Y \) is compact or \(Y \) is paracompact and \(X \) is compact. Let \(\{ B_i : i \in I \} \) be a closed covering of \(X \) and \(\{ x_i : i \in I \} \) a family of points of \(X \), both indexed by a finite set \(I \). If \(F \in \mathcal{V}_c(X, Y) \) and \(S, T : X \to Y \) are two maps satisfying conditions (3.1), (3.3), (3.4) and

\[(4.1) S^- \text{ is l.s.c.,}
\]

then, there exists a nonempty subset \(J \) of \(I \) such that

\[
F\left(\text{co} \{ x_i : i \in J \} \right) \cap T\left(\bigcap \{ B_i : i \in J \} \right) \neq \emptyset.
\]

It would be of some interest to compare Theorems 3 and 4 with other matching theorems due to Park [19, 21, 22] and Balaj [3]. Since \(T(\bigcap \{ B_i : i \in J \}) \subset \bigcap \{ T(B_i) : i \in J \} \), the conclusions of Theorems 3 and 4 are better than the conclusions of the theorems mentioned above.
5. Analytic alternatives, minimax inequalities

Let X be a convex subset of a vector space, Y a nonempty set and $s, t : X \times Y \to \mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$ two functions. We say that t is s-quasiconcave in x if for any nonempty finite subset A of X we have

$$t(x, y) \geq \min_{u \in A} s(u, y) \quad \text{for any } x \in \text{co } A \text{ and all } y \in Y.$$

It is clear that if $s(x, y) \leq t(x, y)$ for each $(x, y) \in X \times Y$ and if for each $y \in Y$ one of the functions $x \to s(x, y), x \to t(x, y)$ is quasiconcave, then t is s-quasiconcave in x.

Theorem 5. Let X be a nonempty compact convex subset of a l.c.s., Y a topological compact space $f, s, t : X \times Y \to \mathbb{R}$ three functions and α, β, γ three real numbers such that $\alpha < \beta \leq \gamma$. Suppose that:

1. The sets $\{(x, y) \in X \times Y : f(x, y) \leq \alpha\}$ and $\{(x, y) \in X \times Y : s(x, y) \geq \gamma\}$ are closed in $X \times Y$;
2. $t(x, y) \leq f(x, y)$ for all $(x, y) \in X \times Y$;
3. For each $x \in X$ the set $\{y \in Y : f(x, y) \leq \alpha\}$ is acyclic or empty;
4. t is s-quasiconcave in x;
5. For each $y \in Y$, the set $\{x \in X : t(x, y) \geq \gamma\}$ is closed in X.

Then, at least one of the following assertions holds:

(a) There exists $x_0 \in X$ such that $f(x_0, y) > \alpha$ for all $y \in Y$;
(b) There exists $y_0 \in Y$ such that $s(x, y_0) < \gamma$ for all $x \in X$.

Proof. We define the maps $F, S, T : X \to Y$ by

$$F(x) = \{y \in Y : f(x, y) \leq \alpha\}, \quad T(x) = \{y \in Y : t(x, y) < \beta\}, \quad \text{and}$$

$$S(x) = \{y \in Y : s(x, y) < \gamma\}.$$

Since the graph of F is closed (by (5.1)), and Y is compact, F is u.s.c. with compact values. Similarly, one obtains that S^* is u.s.c. Suppose that (a) does not hold. Then F has nonempty values and, by (5.3), $F \in \mathcal{V}(X, Y)$. Since $\alpha < \beta$ and $t(x, y) \leq f(x, y)$ for all $(x, y) \in X \times Y$, it follows that $F(x) \subset T(x)$ for all $x \in X$. By (5.5), for each $y \in Y$, $T^*(y)$ is a closed subset of the compact X, hence $T^*(y)$ is compact.
We claim that S is a generalized KKM mapping w.r.t. T. Let A be a nonempty finite subset of X and $y \in T(coA)$. Then, $t(x, y) < \beta$, for some $x \in A$. By (5.4), we have

$$\gamma \geq \beta > t(x, y) \geq \min_{u \in A} s(u, y)$$

hence, for some $u \in A$, $y \in S(u) \subset S(A)$.

Therefore the maps F, S, T satisfy all the requirements of Theorem 1. According to this theorem, $\bigcap_{x \in X} S(x) \neq \emptyset$. Let $y_0 \in \bigcap_{x \in X} S(x)$, then $s(x_0, y) < \gamma$ for all $x \in X$.

From Theorem 5 we derive the following minimax inequality:

Theorem 6. Let X be a nonempty compact convex subset of a l.c.s. Y be a topological compact space and $f, s, t : X \times Y \to \mathbb{R}$ three real functions which satisfy conditions (5.2), (5.4) in Theorem 5 and the following conditions:

1. f is l.s.c. and s is u.s.c. on $X \times Y$;
2. For each $\alpha > \sup_{x \in X} \min_{y \in Y} f(x, y)$ and any $x \in X$, $\{y \in Y : f(x, y) \leq \alpha\}$ is acyclic;
3. For each $y \in Y$, $t(x, y)$ is u.s.c. in x.

Then $\inf_{y \in Y} \max_{x \in X} s(x, y) \leq \sup_{x \in X} \min_{y \in Y} f(x, y)$.

Proof. First let us observe that if f is l.s.c. on $X \times Y$, then for each $x \in X$, $f(x, \cdot)$ is also a l.s.c. function of y on Y and therefore its minimum $\min_{y \in Y} f(x, y)$ on the compact set Y exists. Similarly, $\sup_{x \in X} s(x, y)$ can be replaced by $\max_{x \in X} s(x, y)$.

Suppose the conclusion is be false and choose three real numbers α, β, γ such that

$$\sup_{x \in X} \min_{y \in Y} f(x, y) < \alpha < \beta \leq \gamma < \inf_{y \in Y} \max_{x \in X} s(x, y).$$

One readily verifies that the functions f, s, t satisfy all the requirements of Theorem 5. We prove that neither assertion (a) nor assertion (b) of the conclusion of Theorem 5 can take place.

If (a) happens, then

$$\sup_{x \in X} \min_{y \in Y} f(x, y) \geq \min_{y \in Y} f(x_0, y) > \alpha;$$

a contradiction.
If (b) happens, then
\[
\inf_{y \in Y} \max_{x \in X} s(x, y) \leq \max_{x \in X} s(x, y_0) < \gamma; \quad \text{a contradiction again.}
\]

Further on, versions of Theorems 5 and 6 will be obtained using as argument Theorem 2 instead of Theorem 1.

For \(X, Y\) topological spaces a function \(s : X \times Y \to \mathbb{R}\) is said to be marginally l.s.c. in \(y\) [4] if for every open subset \(U\) of \(X\) the function \(y \to \sup_{x \in U} s(x, y)\) is l.s.c. on \(Y\). Obviously, every function l.s.c. in \(y\) is marginally l.s.c. in \(y\). The example given in [4, p. 249] shows that the converse is not true.

Theorem 7. Let \(X\) be a nonempty metrizable convex set in a l.c.s., \(Y\) a topological compact space \(f, s, t : X \times Y \to \mathbb{R}\) three functions and \(\alpha, \beta, \gamma\) three real numbers such that \(\alpha \leq \beta \leq \gamma\). Assume that conditions (5.2), (5.3) and (5.4) in Theorem 5 are fulfilled and, moreover, the following conditions are satisfied:

1. (7.1) the set \(\{(x, y) \in X \times Y : f(x, y) \leq \alpha\}\) is closed in \(X \times Y\);
2. (7.2) for each \(y \in Y\), the set \(\{x \in X : t(x, y) \geq \gamma\}\) is compact;
3. (7.3) \(s\) is marginally l.s.c. in \(y\).

Then, at least one of the following assertions holds:

(a) There exists \(x_0 \in X\) such that \(f(x_0, y) > \alpha\) for all \(y \in Y\).

(b) There exists \(y_0 \in Y\) such that \(s(x, y_0) \leq \gamma\) for all \(x \in X\).

Proof. Suppose that both assertions (a) and (b) are not true Consider the maps \(F, S, T : X \to Y\) defined by

\[
F(x) = \{y \in Y : f(x, y) \leq \alpha\}, \quad T(x) = \{y \in Y : t(x, y) < \beta\},
\]

\[
S(y) = \{x \in X : s(x, y) \leq \gamma\}.
\]

Suppose (a) does not hold. As in the proof of Theorem 5, we obtain that \(F \in \mathcal{V}(X, Y)\). Let \(U\) be an open subset of \(X\). Since

\[
\{y \in Y : S^*(y) \cap U \neq \emptyset\} = \{y \in Y : \sup_{x \in U} s(x, y) > \gamma\},
\]

the set \(\{y \in Y : f(x_0, y) > \alpha\}\) is open in \(Y\) and \(\inf_{y \in Y} \max_{x \in X} s(x, y) \leq \max_{x \in X} s(x, y_0) < \gamma\); a contradiction again.

\(\blacksquare\)
by (7.3), it follows that S^* is l.s.c. Other requirements of Theorem 2 are easily checked and, according to this theorem, there exists $y_0 \in \bigcap_{x \in X} S(x)$. Then, $s(x, y_0) \leq \gamma$ for all $x \in X$.

From Theorem 7 we obtain immediately the following

Theorem 8. Let X be a nonempty metrizable convex set in a l.c.s., Y a topological compact space and $f, s, t : X \times Y \to \mathbb{R}$ three functions. Suppose that f is l.s.c. on $X \times Y$ and that f, s, t satisfy conditions (5.2), (5.4), (6.2), (6.3) and (7.3). Then $\inf_{y \in Y} \sup_{x \in X} s(x, y) \leq \sup_{x \in X} \min_{y \in Y} f(x, y)$.

The origin of Theorems 6 and 8 goes back to the well-known Sion’s minimax theorem [25]. In our opinion, it is worth comparing our results with other two-function minimax inequalities established by Fan [8], Liu [16], Granas and Liu [11, 12] and Park [20].

We need now to recall Berge’s maximum theorem [5].

Lemma 5. Let X and Y be topological spaces, $f : X \times Y \to \mathbb{R}$ a continuous function and $F : X \to Y$ a continuous map with nonempty compact values. Then the map $G : X \to Y$ defined by $G(x) = \{y \in F(x) : f(x, y) = \max_{v \in F(x)} f(x, v)\}$ is u.s.c.

Note that if f and F are as in Lemma 5 then the map $G : X \to Y$ defined by $G(x) = \{y \in F(x) : f(x, y) = \min_{v \in F(x)} f(x, v)\}$ is u.s.c., too.

Theorem 9. Let X be a nonempty compact convex set in a l.c.s. and Y be a topological space. Let $f, g : X \times Y \to \mathbb{R}$ be two continuous functions and $F : X \to Y$ be a continuous map with nonempty compact values. Suppose that:

1. for each $x \in X$ the set $\{y \in F(x) : f(x, y) = \min_{v \in F(x)} f(x, v)\}$ is acyclic;
2. for each $y \in Y$ the set $\{x \in X : g(x, y) = \max_{u \in X} g(u, y)\}$ is compact;
3. f is g-quasiconcave in x.

Then (a) there exists $(x_0, y_0) \in \text{graph} F$ such that

$$\max_{x \in X} g(x, y_0) \leq \min_{y \in F(x_0)} f(x_0, y);$$
and (b) the following minimax inequality holds:
\[
\inf_{y \in Y} \max_{x \in X} g(x, y) \leq \max_{x \in X} \min_{y \in F(x)} f(x, y).
\]

Proof. We will define three maps \(G, S, T : X \to Y \). The first two are defined by
\[
G(x) = \{ y \in F(x) : f(x, y) = \min_{v \in F(x)} f(x, v) \},
\]
\[
S(x) = \{ y \in Y : \exists u \in X \text{ such that } g(x, y) < g(u, y) \}.
\]

For the third map \(T : X \to Y \) we prefer to give its dual. This is defined by
\[
T^*(y) = \co \{ x \in X : g(x, y) = \max_{u \in X} g(u, y) \}.
\]

It is easy to check that for each \(y \in Y \),
\[
S^*(y) = \{ x \in X : g(x, y) = \max_{u \in X} g(u, y) \}.
\]

By Lemma 5 the maps \(G \) and \(S^* \) are u.s.c. By (9.1), \(G \in V(X, Y) \) and by (9.2), \(T^* \) has compact values. Since for each \(y \in Y \), \(\co S^*(y) = T^*(y) \), by Lemma 3 it follows that \(S \) is a generalized KKM map w.r.t. \(T \). Hence the maps \(G, S, T \) satisfy conditions (1.2), (1.3), (1.4) and (1.5) of Theorem 1.

Since \(X \) is compact and \(g \) is continuous, for each \(y \in Y \), \(\co S^*(y) = T^*(y) \neq \emptyset \), hence the conclusion of Theorem 1 does not hold. By Theorem 1 there exist \(x_0 \in X \) and \(y_0 \in Y \) such that \(y_0 \in G(x_0) \setminus T(x_0) \).

By \(y_0 \in G(x_0) \) it follows that
\[
f(x_0, y_0) \leq f(x_0, y) \text{ for each } y \in F(x_0).
\]

Since \(y_0 \notin T(x_0) \), we have \(x_0 \in T^*(y_0) \). Hence there exists a finite set \(\{ x_1, \ldots, x_n \} \subset X \) such that
\[
\max_{u \in X} g(u, y_0) = g(x_1, y_0) = \cdots = g(x_n, y_0) = \min_{1 \leq i \leq n} g(x_i, y_0)
\]
and \(x_0 \in \co \{ x_1, \ldots, x_n \} \). Then for each \(y \in F(x_0) \) and \(x \in X \), by (6), (5) and (9.3) we obtain
\[g(x, y_0) \leq \max_{u \in X} g(u, y_0) = \min_{1 \leq i \leq n} g(x_i, y_0) \leq f(x_0, y_0) \leq f(x_0, y). \]

Assertion (b) follows immediately from (a) since
\[
\inf_{y \in Y} \max_{x \in X} g(x, y) \leq \max_{x \in X} g(x, y_0) \leq \min_{y \in F(x_0)} f(x_0, y) \leq \max_{x \in X} \min_{y \in F(x)} f(x, y). \]

It would be of some interest to compare Theorem 9 with earlier results of Granas and Liu [11, 12], Ha [13, 14] and Park [20, 21, 23].

The next two corollaries are particular cases of Theorem 9.

Corollary 1. Let \(X \) be a nonempty compact convex set in a l.c.s. and \(Y \) be a compact topological space. Let \(f, g : X \times Y \to \mathbb{R} \) be two continuous functions satisfying conditions (9.2), (9.3) and:
\[(9.1') \text{ for each } x \in X \text{ the set } \{ y \in Y : f(x, y) = \min_{v \in Y} f(x, v) \} \text{ is acyclic.} \]

Then
\[\min_{y \in Y} \max_{x \in X} g(x, y) \leq \max_{x \in X} \min_{y \in Y} f(x, y). \]

Proof. Take \(F(x) = Y \) for all \(x \in X \) and apply Theorem 9. \(\blacksquare \)

The origin of the following corollary goes back to Ky Fan’s minimax inequality [9].

Corollary 2. Let \(X \) be a compact convex set in a l.c.s. and \(f, g : X \times X \to \mathbb{R} \) be two continuous functions satisfying condition (9.3) and:
\[(9.2') \text{ for each } y \in X \text{ the set } \{ x \in X : g(x, y) = \max_{u \in X} g(u, y) \} \text{ is compact.} \]

Then
\[\min_{y \in X} \max_{x \in X} g(x, y) \leq \max_{x \in X} f(x, x). \]

Proof. Apply Theorem 9 with \(X = Y, F(x) = \{ x \} \). \(\blacksquare \)
172

M. Balaj

References

Received 9 January 2006