ArticleOriginal scientific text

Title

Constant selections and minimax inequalities

Authors 1

Affiliations

  1. Department of Mathematics, University of Oradea, 410087, Oradea, Romania

Abstract

In this paper, we establish two constant selection theorems for a map whose dual is upper or lower semicontinuous. As applications, matching theorems, analytic alternatives, and minimax inequalities are obtained.

Keywords

map, constant selection, acyclic map, matching theorem, analytic alternative, minimax inequality

Bibliography

  1. J. Andres and L. Górniewicz, Topological Fixed Point Principles for Boundary Value Problems, Kluwer Academic Publishers 2003.
  2. J.P. Aubin and J. Ekeland, Applied Nonlinear Analysis, A Wiley-Interscience Publications, John Wiley & Sons Inc., New York 1984.
  3. M. Balaj, Admissible maps, intersection results, coincidence theorems, Comment. Math. Univ. Carolinae 42 (2001), 753-762.
  4. R.C. Bassanezi and G.H. Greco, A minimax theorem for marginally u.s.c./l.s.c. functions, Topol. Methods Nonlinear Anal. 5 (1995), 249-253.
  5. C. Berge, Espaces Topologique, Edinburgh, London, Oliver and Boyd 1963.
  6. T.-H. Chang and C.-L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203 (1996), 224-235.
  7. L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Academic Publishers, 1999.
  8. Ky Fan, Sur une théorème minimax, C. R. Acad. Sci. Paris 259 (1964), 3925-3928.
  9. Ky Fan, A minimax inequality and its applications, in 'Inequality III' (O. Shisha, ed.), pp.~103-113, Academic Press, New York 1972.
  10. Ky Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984), 519-537.
  11. A. Granas and F.-C. Liu, Quelques théorèmes de minimax sans convexité, C. R. Acad. Sci. Paris 300 (1985), 347-350.
  12. A. Granas and F.-C. Liu, Coincidences for set-valued maps and minimax inequalities, J. Math. Pures Appl. 65 (1986), 119-148.
  13. C.-W. Ha, Minimax and fixed point theorems, Math. Ann. 248 (1980), 73-77.
  14. C.-W. Ha, On a minimax inequality of Ky Fan, Proc. Am. Math. Soc. 99 (1987), 680-682.
  15. L-J. Lin, Applications of a fixed point theorem in G-convex spaces, Nonlinear Anal. 46 (2001), 601-608.
  16. F.-C. Liu, A note on the von Neumann-Sion minimax principle, Bull. Inst. Math. Acad. Sinica 6 (1978), 517-524.
  17. E. Michael, Continuous selections I, Ann. Math. 63 (2) (1956), 361-381.
  18. E. Michael, A theorem on semi-continuous set-valued functions, Duke Math. J. 26 (1959), 647-651.
  19. S. Park, Generalizations of Ky Fan's matching theorems and their applications, J. Math. Anal. Appl. 141 (1989), 164-176.
  20. S. Park, Generalized Fan-Browder fixed point theorems and their applications, in 'Collection of Papers Dedicated to J.G. Park', pp. 51-77, 1989.
  21. S. Park, Some coincidence theorems for acyclic multifunctions and applications to KKM theory, in 'Fixed Point Theory and Applications' (K.-K. Tan, Ed.), pp. 248-277, World Scientific, River Edge, New Jersey 1992.
  22. S. Park, Foundations of the KKM via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994), 493-519.
  23. S. Park, Acyclic versions of the von Neumann and Nash equilibrium theorems, J. Comput. Appl. Math. 113 (2000), 83-91.
  24. H.K. Pathak and M.S. Khan, On D-KKM theorem and its applications, Bull. Austral. Math. Soc. 67 (2003), 67-77.
  25. M. Sion, On general minimax theorems, Pacific J. Math. 8 (1958), 171-176.
Pages:
159-173
Main language of publication
English
Received
2006-01-09
Published
2006
Exact and natural sciences