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1. Introduction

In this paper, we study the following quasilinear system

(1)

{
∆pu = |u|p−2u

∆qv = |v|q−2v

in Ω

in Ω ,
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subject to the nonlinear boundary conditions

(2)

{
|∇u|p−2∇u · η = λa(x)|u|p−2u + c(x)|u|α−1u|v|β+1

|∇v|q−2∇v · η = µb(x)|v|q−2v + c(x)|u|α+1|v|β−1v

on ∂Ω

on ∂Ω

Here Ω is a bounded domain in R
N , N ≥ 2, with a smooth boundary ∂Ω,

α, β, λ, µ, p, q are real numbers, ∆p and ∆q are the p- and q-Laplace opera-
tors, a(.) and b(.) are nonnegative weights and c(.) is an integrable function.

The system (1)–(2) is related to the eigenvalue problem for the p-Laplacian

(3)

{
∆pu = |u|p−2u

|∇u|p−2∇u · η = λa(x)|u|p−2u

in Ω

on ∂Ω ,

which, in the case p = 2, is known as the Steklov problem, [1]. Our main tool
in the study of this system is the fibering method which was introduced by
Pohozaev, [4, 5], for a single equation and developed for systems by Bozhkov
and Mitidieri [3].

The main result of this work is the following theorem. For the related
definitions and hypotheses we refer to Section 2.

Theorem 1. Assume that hypotheses (H)–H(c) are satisfied, 0 ≤ λ < λ1

and 0 ≤ µ < µ1. Then the system (1)–(2) admits at least one weak solution

(u∗, v∗) ∈ E with u∗, v∗ > 0 on Ω.

2. Notation and preliminaries

Let Ω be a bounded domain in R
N with a smooth boundary ∂Ω, and p > 1,

q > 1. We assume that the Sobolev spaces X = W 1,p(Ω) and Y = W 1,q(Ω)
are supplied with the norms

||u||1,p =

(∫

Ω
|∇u|pdx +

∫

Ω
|u|pdx

) 1

p

, ||v||1,q =

(∫

Ω
|∇v|qdx +

∫

Ω
|v|qdx

) 1

q

,

respectively. We denote E = X × Y and for (u, v) ∈ E,

||(u, v)|| = ||u||1,p + ||v||1,q .
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We state the hypotheses that we shall use throughout this paper.

(H) α, β, p > 1, q > 1 are positive real numbers such that α + 1 < p,
β + 1 < q and δ := pq − q(α + 1) − p(β + 1) > 0.

(Ha) a(.) ∈ Ls(∂Ω) with a ≥ 0 on ∂Ω and m{x ∈ ∂Ω : a(x) > 0} > 0,
where s > (N − 1)/(p − 1) if 1 < p ≤ N and s ≥ 1 if p ≥ N.

(Hb) b(.) ∈ Lt(∂Ω) with b ≥ 0 on ∂Ω and m{x ∈ ∂Ω : b(x) > 0} > 0, where
t > (N − 1)/(q − 1) if 1 < q ≤ N and t ≥ 1 if q ≥ N.

(Hc) c(.)

a(.)
α+1

p b(.)
β+1

q

∈ Lpq/δ(∂Ω) and c+ 6= 0 on ∂Ω.

Remark 2. Since δ > 0, we have that

α + 1

p
+

β + 1

q
< 1.

The proof of the following Lemma can be found in ([2]).

Lemma 3. Suppose that a(.) satisfies (Ha). Then

(i) there exists a real number λ1, the first eigenvalue of (3), such that

(4)
1

λ1
= sup

C∈C1

min
u∈C

∫
∂Ω a|u|pdx∫

Ω |∇u|pdx +
∫
Ω |u|pdx

,

where C1 = {C ⊂ W 1,p(Ω) : C is compact, symmetric and γ(C) ≥ 1},
γ(.) being the genus function.

(ii) λ1 is simple and isolated.

(iii) if u is an eigenfunction corresponding to λ1 then u ∈ C1,α(Ω) and does

not change sign in Ω.

Remark 4. As a consequence of (4) we have

(5)

∫

Ω
|∇u|pdx +

∫

Ω
|u|pdx ≥ λ1

∫

∂Ω
a|u|pdx

for every u ∈ X.
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Consider the functionalI Φ(·, ·) defined on E by

(6) Φ(u, v) =
α + 1

p

(∫

Ω
|∇u|pdx +

∫

Ω
|u|pdx − λ

∫

∂Ω
a|u|pdx

)

+
β + 1

q

(∫

Ω
|∇v|qdx +

∫

Ω
|v|qdx − µ

∫

∂Ω
b|v|qdx

)
−

∫

∂Ω
c|u|α+1|v|β+1dx

Then Φ(·, ·) is of class C1 and its critical points give rise to weak solutions
of (1)–(2).

3. The fibering method

In this Section, we give a brief description of the fibering method. Let
L : E → R be a C1-functional. We express (z, w) ∈ E in the form

(7) z = ru, w = sv

where r, s ∈ R and u, v ∈ E.If (z, w) = (ru, sv) is a critical point of L(·, ·)
then

(8)
∂L(ru, sv)

∂r
= 0 and

∂L(ru, sv)

∂s
= 0.

Assume that (8) can be uniquely solved for r = r(u) and s = s(v) and that
the functions r(·) and s(·) are continuously differentiable. In addition, let
H : E → R and F : E → R be continuously differentiable functions such
that if

(9) H(u, v) = c1, F (u, v) = c2,

for some c1, c2 ∈ R, then their Gateaux derivatives H ′ and F ′ at (u, v) ∈ E
satisfy

(10) det

(
H ′(u, v)(u, 0) F ′(u, v)(u, 0)

H ′(u, v)(0, v) F ′(u, v)(0, v)

)
6= 0.

We have the following:

Proposition 5 ([3, Lemma 4]). Let L̂(u, v) := L(r(u)u, s(v)v) and assume

that (10) holds f or u, v satisfying (9). If (u, v) is a conditional critical point

of L̂(·, ·) with the conditions (9), then (r(u)u, s(v)v) is a critical point of

L(·, ·).
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4. Proof of Theorem 1

We apply the fibering method to the functional Φ defined in (6). Combining
(7) and (6) we get that

(11)

Φ(ru, sv) =
α + 1

p
|r|p

(∫

Ω
|∇u|pdx +

∫

Ω
|u|pdx − λ

∫

∂Ω
a|u|pdx

)

+
β + 1

q
|s|q

(∫

Ω
|∇v|qdx +

∫

Ω
|v|qdx − µ

∫

∂Ω
b|v|qdx

)

− |r|α+1|s|β+1

∫

∂Ω
c|u|α+1|v|β+1dx.

If (z, w) = (ru, sv) is a critical point of Φ(·, ·), then by (8)

(12)

0 = |r|p−2r

(∫

Ω
|∇u|pdx +

∫

Ω
|u|pdx − λ

∫

∂Ω
a|u|pdx

)

− |r|α−1r|s|β+1

∫

∂Ω
c|u|α+1|v|β+1dx

and

(13)

0 = |s|q−2s

(∫

Ω
|∇v|qdx +

∫

Ω
|v|qdx − µ

∫

∂Ω
b|v|qdx

)

− |r|α+1|s|β−1s

∫

∂Ω
c|u|α+1|v|β+1dx.

Let

(14) H(u) :=

(∫

Ω
|∇u|pdx +

∫

Ω
|u|pdx − λ

∫

∂Ω
a|u|pdx

)
,

(15) F (v) :=

(∫

Ω
|∇v|qdx +

∫

Ω
|v|qdx − µ

∫

∂Ω
b|v|qdx

)

and

(16) C(u, v) :=

∫

∂Ω
c|u|α+1|v|β+1dx.
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The equations (12) and (13) in view of (14)–(16), become

(17)

{
|r|p−α−1H(u) − |s|β+1C(u, v) = 0

|s|q−β−1F (v) − |r|α+1C(u, v) = 0.

It is clear that H(u), F (v) and C(u, v) must have the same sign. In view of
Remark 4, H(u), F (v) > 0, thus C(u, v) > 0.

It is not difficult to see that the solution to (17) is

(18)





|r| = C(u, v)
q
δ F (v)−

β+1

δ H(u)
β+1−q

δ

|s| = C(u, v)
p
δ H(u)−

α+1
δ F (v)

α+1−p
δ

where δ is defined in (H). For (u, v) ∈ E with u 6= 0, v 6= 0, let r = r(u) >
0 and s = s(v) > 0 be the positive solutions of (18). Combining (11) and
(18), we conclude that

(19) Φ̂(u, v) := Φ(ru, sv) = ζC(u, v)
pq
δ H(u)−

q(α+1)
δ F (v)−

p(β+1)
δ

where ζ =α+1
p + β+1

q . Clearly, any solution to the problem

maxC(u, v)

with the restrictions

H(u) = 1 and F (v) = 1,

is a conditional critical point of Φ̂, providing this way a solution to (1)–(2)
by Proposition 5, since (10) is satisfied on

(20) G := {(u, v) : H(u) = 1 and F (v) = 1}.

We show next that C : E → R is compact. To this end let {(un, vn)},
n ∈ N , be a bounded sequence in E. Without loss of generality we may
assume that un → u weakly in X and vn → v weakly in Y. Due to the
compactness of the embeddings X ⊆ Lp(a, ∂Ω) and Y ⊆ Lq(b, ∂Ω) we have
that un → u and vn → v strongly in Lp(a, ∂Ω) and Lq(b, ∂Ω) respectively.
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By (16),

|C(un, vn) − C(u, v)| =

∣∣∣∣
∫

∂Ω
c|un|

α+1|vn|
β+1dx −

∫

∂Ω
c|u|α+1|v|β+1dx

∣∣∣∣

≤

∫

∂Ω
|c||un|

α+1
∣∣∣|vn|

β+1 − |v|β+1
∣∣∣ dx +

∫

∂Ω
|c||v|β+1

∣∣|un|
α+1 − |u|α+1

∣∣ dx.

By the Lebesgue dominated convergence theorem,

∫

∂Ω
|c||un|

α+1
∣∣∣|vn|

β+1 − |v|β+1
∣∣∣ dx

=

∫

∂Ω

|c|

a
α+1

p b
β+1

q

a
α+1

p

∣∣uα+1
n

∣∣ b
β+1

q

∣∣∣|vn|
β+1 − |v|β+1

∣∣∣ dx

≤

∥∥∥∥∥
c

a
α+1

p b
β+1

q

∥∥∥∥∥
pq

δ

‖un‖
α+1
a,p

(∫

∂Ω
b
∣∣∣|vn|

β+1 − |v|β+1
∣∣∣

q

β+1

dx

) β+1

q

→ 0.

Similarly, ∫

∂Ω
|c||v|β+1

∣∣|un|
α+1 − |u|α+1

∣∣ dx → 0.

Thus C is compact.
If (u, v) ∈ G, then

∫

Ω
|∇u|pdx +

∫

Ω
|u|pdx = λ

∫

∂Ω
a|u|pdx + 1

≤
λ

λ1

(∫

Ω
|∇u|pdx +

∫

Ω
|u|pdx

)
+ 1,

so

||u||p1,p =

∫

Ω
|∇u|pdx +

∫

Ω
|u|pdx ≤

λ1

λ1 − λ
.

Similarly, ||v||1,q ≤ cµ1

µ1−µ . Consequently, C(·, ·) is bounded on G. Let
{(un, vn)}n∈N be a maximizing sequence in G, that is, |C(un, vn)| → M :=
sup{|C(u, v)| : (u, v) ∈ G} > 0. We may assume that un → u0 weakly in X
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and vn → v0 weakly in Y. Since C is compact |C(u0, v0)| = M. It remains
to show that (u0, v0) ∈ G. Note that, by (20), H(u0) ≤ 1 and F (v0) ≤ 1. If
one or both of these two inequalities were strict, there would exist t1, t2 ∈ R
with max{t1, t2} > 1, such that H(t1u0) = 1 and F (t2v0) = c. But then
(t1u0, t2v0) ∈ G and |C(t1u0, t2v0)| > M, a contradiction. Thus (u0, v0) is a
conditional critical point of Φ̂. Since (|u0|, |v0|) is also a conditional critical
point of Φ̂, we may assume that u0 ≥ 0 and v0 ≥ 0 in Ω. Proposition 5,
guarantees that (u∗, v∗) := (r(u0)u0, s(v0)v0) is a critical point of Φ(.). By
standard arguments, we can show that u∗, v∗ ∈ C1,α(Ω) for some α ∈ (0, 1),
and so u∗, v∗ > 0 in Ω due to the Harnack inequality.

Remark 6.

(i) If u∗, v∗ ∈ C1,α(Ω), then u∗, v∗ > 0 on Ω. Indeed, if we assume that
u∗(x0) = 0 for some x0 ∈ ∂Ω then by Theorem 5 in [6], ∇u∗(x0)·η(x0) <
0, contradicting (2). Thus u∗ > 0 on Ω. Similarly v∗ > 0 on Ω.

(ii) The fibering method is a powerful tool in proving that an equation
or a system admits a solution. However, at least in the case where
the system (8) has a unique solution, it cannot provide more than one
solution. This is a consequence of the fact that the maximum or the
minimum of L in Proposition 5 is independent of the choice of H and F .
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