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1. Introduction

Let R denote the real line and let J = [0, a] be a closed and bounded interval
in R. Consider the initial value problem of nth order perturbed differential
inclusion (in short PDI)

(1)

{

x(n)(t) ∈ F (t, x(t)) +G(t, x(t)) a.e. t ∈ J,

x(i)(0) = xi ∈ R

where F,G : J × R → P (R), i ∈ {0, 1, . . . , n− 1} and P (R) is the set of all
nonempty subsets of R.

By a solution of problem (1) we mean a function x ∈ ACn−1(J,R) whose
nth derivative x(n) exists and is a member of L1(J,R) in F (t, x), i.e., there
exists a v ∈ L1(J,R) such that v(t) ∈ F (t, x(t)) + G(t, x(t)) a.e t ∈ J,

and x(n)(t) = v(t), t ∈ J and x(i)(0) = xi ∈ R, i ∈ {0, 1, . . . , n − 1}, where
ACn−1(J,R) is the space of all continuous real-valued functions whose (n−1)
derivatives exist and are absolutely continuous on J.

The method of upper and lower solutions has been successfully applied
to the problems of nonlinear differential equations and inclusions. We refer
to Heikkila and Laksmikantham [10], Halidias and Papageorgiou [9], and
Benchochra [3]. In this paper, we apply the multi-valued version of Kras-
noselskii’s fixed point theorem due to Dhage [5] to IVP (1) for proving the
existence of solutions between the given lower and upper solutions, using
the Carathéodory condition on F. A few details of differential inclusions
and multi-valued analysis appear in Aubin and Cellina [2] and Hu and Pa-
pageorgiu [11] respectively.

2. Preliminaries

Throughout this paper, X will be a Banach space and let P (X) denote
the set of all nonempty subsets of X. By Pbd,cl(X) and Pcp,cv(X) we will
denote the classes of all nonempty, bounded, closed and respectively com-
pact, convex subsets of X. For x ∈ X and Y,Z ∈ Pbd,cl(X) we denote by
D(x, Y ) = inf{‖x− y‖ | y ∈ Y } and ρ(Y,Z) = supa∈Y D(a, Z).

The function H : Pbd,cl(X) × Pbd,cl(X) → R
+ defined by

H(A,B) = max{ρ(A,B), ρ(B,A)}
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is called the Pompeiu-Hausdorff metric on X. Note that ‖Y ‖ = H(Y, {0}).

T : X → P (X) is called a multi-valued mapping on X. A point x0 ∈ X

is called a fixed point of the multi-valued operator T : X → P (X) if x0 ∈
T (x0). The fixed point set of T will be denoted by Fix(T ).

Definition 2.1. Let T : X → Pbd,cl(X) be a multi-valued operator. Then
T is called a multi-valued contraction if there exists a constant k ∈ (0, 1)
such that for each x, y ∈ X we have

H(T (x), T (y)) ≤ k‖x− y‖.

The constant k is called a contraction constant of T .

We apply in the sequel the following form of a fixed point theorem given by
Dhage [4].

Theorem 2.2. Let X be a Banach space and A : X → Pcl,cv,bd(X), B :
X → Pcp,cv(X) two multi-valued operators satisfying:

(i) A is a contraction with a contraction constant k

(ii) B is u.s.c. and compact.

Then either

(i) the operator inclusion λx ∈ Ax+Bx has a solution for λ = 1
or

(ii) the set E = {u ∈ X | λx ∈ Ax+Bx, λ > 1} is unbounded.

We also need the following definitions.

Definition 2.3. Let J be an interval of the real axis. A multi-valued map
F : J → Pcp,cv(R) is said to be measurable if for every y ∈ X, the function
t→ d(y, F (t)) = inf{‖y − x‖ : x ∈ F (t)} is measurable.

Definition 2.4. A multi-valued map F : J × R → P (R) is said to be L1-
Carathéodory if

(i) t→ F (t, x) is measurable for each x ∈ R,

(ii) x→ F (t, x) is upper semi-continuous for almost all t ∈ J, and
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(iii) for each real number k > 0, there exists a function hk ∈ L1(J,R) such
that

‖F (t, x)‖ = sup{|u| : u ∈ F (t, x)} ≤ hk(t), a.e. t ∈ J

for all x ∈ R with |x| ≤ k.

Denote

S1
F (x) = {v ∈ L1(J,R) : v(t) ∈ F (t, x(t)) a.e. t ∈ J}.

Then we have the following lemmas due to Lasota and Opial [12].

Lemma 2.1. If dim(E) < ∞ and F : J × E → P (E) is L1-Carathéodory,

then S1
F (x) 6= ∅ for each x ∈ E.

Lemma 2.2. Let X be a Banach space, F an L1-Carathéodory multi-valued

map with S1
F 6= ∅ and K : L1(J,R) → C(J,E) be a linear continuous map-

ping. Then the operator

K ◦ S1
F : C(J,E) −→ KC(E)

has a closed graph in C(J,E) × C(J,E).

We define the partial ordering ≤ inW n,1(J,R) (the Sobolev class of functions
x : J → R for which x(n−1) are absolutely continuous and x(n) ∈ L1(J,R))
as follows. Let x, y ∈W n,1(J,R). Then we define

x ≤ y ⇔ x(t) ≤ y(t), for all t ∈ J.

If a, b ∈ W n,1(J,R) and a ≤ b, then we define an order interval [a, b] in
W n,1(J,R) by

[a, b] = {x ∈W n,1(J,R) : a ≤ x ≤ b}.

The following definition appears in Dhage et al. [1].

Definition 2.5. A function α ∈ W n,1(J,R) is called a lower solution of
problem (1) if for all v1 ∈ L1(J,R) with v1(t) ∈ F (t, α(t)) and v2 ∈ L1(J,R)
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with v2(t) ∈ G(t, α(t)) a.e. t ∈ J we have that α(n)(t) ≤ v1(t)+v2(t) a.e. t ∈
J and α(i)(0) ≤ xi, i = 0, 1, . . . , n−1. Similarly, a function β ∈W n,1(J,R) is
called an upper solution of problem (1) if for all v1 ∈ L1(J,R) with v1(t) ∈
F (t, α(t)) and v2 ∈ L1(J,R) with v2(t) ∈ G(t, α(t)) a.e. t ∈ J we have that
α(n)(t) ≥ v1(t) + v2(t) a.e. t ∈ J and α(i)(0) ≥ xi, i = {0, 1, . . . , n− 1}.

Now we are ready to prove our main existence result for the IVP (1) in the
following section under suitable conditions on the multi-function F and G.

3. Existence result

We consider the following set of assumptions in the sequel.

(H1) The multi-function t→ F (t, x) is measurable and integrably bounded
for each x ∈ R.

(H2) There exists a function k ∈ L1(J,R) such that the multi-function
F : J × R → Pcl,cv,bd(R) satisfies

H(F (t, x), F (t, y)) ≤ k(t)|x− y| a.e. t ∈ J

for all x, y ∈ R.

(H3) The multi G(t, x) has compact and convex values for each
(t, x) ∈ J × R.

(H4) G(t, x) is L1-Carathéodory.

(H5) There exists a function φ ∈ L1(J,R) with φ(t) > 0 a.e. t ∈ J and a
nondecreasing function ψ : R

+ → (0,∞) such that

‖G(t, x)‖ ≤ φ(t)ψ(|x|) a.e. t ∈ J

for all x ∈ R.

(H6) Problem (1) has a lower solution α and an upper solution β with
α ≤ β.

We use the following lemma in the sequel.

Lemma 3.1. Suppose that hypothesis (H3) holds. Then for any

a ∈ F (t, x),
|a| ≤ k(t)|x| + ‖F (t, 0)‖, t ∈ J

for all x ∈ R.
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Proof. Let x ∈ R be arbitrary. Then by the triangle inequality

‖F (t, x)‖ = H(F (t, x), 0)

≤ H(F (t, x), F (t, 0)) +H(F (t, 0), 0)

≤ H(F (t, x), F (t, 0)) + ‖F (t, 0)‖,

for all t ∈ J . Hence for any a ∈ F (t, x),

|a| ≤ ‖F (t, x)‖

≤ H(F (t, x), F (t, 0)) + ‖F (t, 0)‖

≤ k(t)|x| + ‖F (t, 0)‖,

for all t ∈ J . The proof of the lemma is complete.

Theorem 3.1. Assume that (H1)–(H6) hold. Suppose that

(2)

∫

∞

C1

ds

ψ(s)
ds > C2‖φ‖L1

where

C1 =

n−1
∑

i=0

|xi|a
i

i!
+

an−1

(n− 1)!
(‖α‖ + ‖β‖)

(

‖k‖L1 + L
)

, L =

∫ 1

0
‖F (s, 0)‖ ds

and C2 = an−1

(n−1)! . Further, if an−1

(n−1)!‖k‖L1 < 1, then the IVP (1) has at least

one solution x such that

α(t) ≤ x(t) ≤ β(t), for all t ∈ J.

Proof. First, we transform the IVP (1) into a fixed point inclusion in a
suitable Banach space. Consider the following problem

(3)

{

x(n)(t) ∈ F (t, τx(t)) +G(t, τx(t)) a.e. t ∈ J,

x(i)(0) = xi ∈ R

for all i ∈ {0, 1, . . . , n − 1}, where τ : C(J,R) → C(J,R) is the truncation
operator defined by
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(4) (τx)(t) =















α(t), if x(t) < α(t)

x(t), if α(t) ≤ x(t) ≤ β(t)

β(t), if β(t) < x(t).

The problem of existence of a solution of problem (1) reduces to finding the
solution of the integral inclusion

(5)

x(t) ∈
n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
F (s, τx(s)) ds

+

∫ t

0

(t− s)n−1

(n− 1)!
G(s, τx(s)) ds, t ∈ J.

We study the integral inclusion (5) in the space C(J,R) of all continuous
real-valued functions on J with a supremum norm ‖ · ‖. Define two multi-
valued maps A,B : C(J,R) → Pf (C(J,R)) by

(6) Ax =

{

u ∈ C(J,R) : u(t) =

∫ t

0

(t− s)n−1

(n− 1)!
v(s) ds, v ∈ S1

F (τx)

}

(7)

Bx =

{

u ∈ C(J,R) : u(t) =

n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
v(s) ds, v ∈ S1

G(τx)

}

where

S1
F (τx)={v ∈ S1

F (τx) : v(t) ≥ α(t) a.e. t ∈ A1 and v(t) ≤ β(t), a.e. t ∈ A2}

S1
G(τx)={v ∈ S1

G(τx) : v(t) ≥ α(t) a.e. t ∈ A1 and v(t) ≤ β(t), a.e. t ∈ A2}

and

A1 = {t ∈ J : x(t) < α(t) ≤ β(t)},

A2 = {t ∈ J : α(t) ≤ β(t) < x(t)},

A3 = {t ∈ J : α(t) ≤ x(t) ≤ β(t)}.
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By Lemma 2.1, S1
F (τx) 6= ∅ for each x ∈ C(J,R) which further yields that

S1
F (τx) 6= ∅ for each x ∈ C(J,R). Indeed, if v ∈ S1

F (x) then the function
w ∈ L1(J,R) defined by

w = αχA1
+ βχA2

+ vχA3
,

is in S1
F (τx) by virtue of decomposability of w. Similarly, S1

G(τx) 6= ∅ for
each x ∈ C(J,R).

We shall show that the operators A and B satisfy all the conditions of
Theorem 2.2.

Step I. First, we show that Ax is a closed convex and bounded subset
of X for each x ∈ X. This follows easily if we show that the values of
Nemytzki operator are closed in L1(J,R). Let {wn} be a sequence in L1(J,R)
converging to a point w. Then wn → w in measure and so, there exists a
subsequence S of positive integers with wn converging a.e. to w as n → ∞
through S. Now since (H1) holds, the values of S1

F are closed in L1(J,R).
Thus for each x ∈ X we have that Ax is a non-empty and closed subset
of X.

First, we prove that A(x) are convex subsets of C(J,R) for all x ∈

C(J,R). Let u1, u2 ∈ A(x). Then there exist v1 and v2 in S1
F (τx) such that

uj(t) =

∫ t

0

(t− s)n−1

(n− 1)!
vj(s) ds, j = 1, 2.

Since F (t, x) has convex values, one has for 0 ≤ k ≤ 1

[kv1 + (1 − k)v2](t) ∈ S1
F (τx)(t), ∀t ∈ J.

As a result we have

[ku1 + (1 − k)u2](t) =

∫ t

0

(t− s)n−1

(n− 1)!
[kv1(s) + (1 − k)v2(t)] ds.

Therefore [ku1 + (1 − k)u2] ∈ Ax and consequently Ax has convex values
in C(J,R). Thus A : X → Pcl,cv,bd(X). Again from hypothesis (H1) it
follows that Ax is a bounded subset of X for each x ∈ X. Thus we have
A : X → Pcl,cv,bd(X).
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Step II. Next we show that B has compact values on X. Now the operator
B is equivalent to the composition L ◦ S !

F of two operators on L1(J,R),
where L : L1(J,R) → X is defined by

Lv(t) =

n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
v(s) ds

To show B that has compact values, it is enough that the composition
operator L ◦ S1

G has compact values on X. It can be shown as in the Step
IV below that (L◦S1

F )(x) is a compact subset of X for each x ∈ X. Further
as in the case of operator A it can be shown that B has convex values on X.
Thus we have B : X → Pcp,cv(X).

Step III. Next we show that A is a multi-valued contraction on X. Let

x, y ∈ X and u1 ∈ A(x). Then u1 ∈ X and u1(t) =
∫ t
0

(t−s)n−1

(n−1)! v1(s) ds

for some v1 ∈ S1
F (x). Since H(F (t, x(t)), F (t, y(t)) ≤ k(t)‖x(t) − y(t)‖, one

obtains that there exists w ∈ F (t, y(t)) such that ‖v1(t) −w‖ ≤ k(t)‖x(t) −
y(t)‖. Thus the multi-valued operator U defined by U(t) = S1

F (y)(t)∩K(t),
where and

K(t) = {w| ‖v1(t) − w‖ ≤ k(t)‖x(t) − y(t)‖}

has nonempty values and is measurable. Let v2 be a measurable selection
for U (which exists by Kuratowski-Ryll-Nardzewski’selection theorem. See
[3]). Then v2 ∈ F (t, y(t)) and ‖v1(t) − v2(t)‖ ≤ k(t)‖x(t) − y(t)‖ a.e. on J .

Define u2(t) = q(t) +
∫ t
0

(t−s)n−1

(n−1)! v2(s) ds. It follows that u2 ∈ A(y) and

‖u1(t) − u2(t)‖ ≤

∣

∣

∣

∣

∫ t

0

(t− s)n−1

(n− 1)!
v1(s) ds−

∫ t

0

(t− s)n−1

(n− 1)!
v2(s) ds

∣

∣

∣

∣

≤

∫ t

0

(t− s)n−1

(n− 1)!
|v1(s) − v2(s)| ds

≤

∫ t

0

(t− s)n−1

(n− 1)!
k(s)|x(s) − y(s)| ds

≤
an−1

(n− 1)!
‖k‖L1‖x− y‖.
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Taking the supremum over t, we obtain

‖u1 − u2‖ ≤
an−1

(n− 1)!
‖k‖L1‖x− y‖.

From this and the analogous inequality obtained by interchanging the roles
of x and y we get that

H(A(x), A(y)) ≤
an−1

(n− 1)!
‖k‖L1‖x− y‖,

for all x, y ∈ X. This shows that A is a multi-valued contraction on X since
an−1

(n−1)!‖k‖L1 < 1.

Step IV. Next we show that the multi-valued operator B is completely
continuous on X. To finish, first we show that B maps bounded sets into
uniformly bounded sets in C(J,R). To see this, let S be a bounded set in
C(J,R). Then there exists a real number r > 0 such that ‖x‖ ≤ r,∀x ∈ S.

Now for each u ∈ Bx, there exists a v ∈ S1
G(τx) such that

u(t) =

n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
v(s) ds.

Then for each t ∈ J,

|u(t)| ≤
n−1
∑

i=0

|xi|a
i

i!
+

∫ t

0

an−1

(n− 1)!
|v(s)| ds

≤
n−1
∑

i=0

|xi|a
i

i!
+

∫ t

0

an−1

(n− 1)!
hr(s) ds

=
n−1
∑

i=0

|xi|a
i

i!
+

an−1

(n− 1)!
‖hr‖L1 .

This further implies that

‖u‖ ≤
n−1
∑

i=0

|xi|a
i

i!
+

an−1

(n− 1)!
‖hr‖L1

for all u ∈ Bx ⊂ B(S). Hence B(S) is bounded.
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Step V. Next we show that B maps bounded sets into equicontinuous sets.
Let S be a bounded set as in step II, and u ∈ Bx for some x ∈ S. Then
there exists v ∈ S1

G(τx) such that

u(t) =
n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
v(s) ds.

Then for any t1, t2 ∈ J we have

|u(t1) − u(t2)|

≤

∣

∣

∣

∣

∣

n−1
∑

i=0

xit
i
1

i!
−

n−1
∑

i=0

xit
i
2

i!

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t1

0

(t1 − s)n−1

(n− 1)!
v(s) ds−

∫ t2

0

(t2 − s)n−1

(n− 1)!
v(s) ds

∣

∣

∣

∣

≤ |q(t1) − q(t2)|

+

∣

∣

∣

∣

∫ t1

0

(t1 − s)n−1

(n− 1)!
v(s) ds−

∫ t1

0

(t2 − s)n−1

(n− 1)!
v(s) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t1

0

(t2 − s)n−1

(n− 1)!
v(s) ds−

∫ t2

0

(t2 − s)n−1

(n− 1)!
v(s) ds

∣

∣

∣

∣

≤ |q(t1) − q(t2)|

+

∫ t1

0

∣

∣

∣

∣

(t1 − s)n−1

(n− 1)!
−

(t2 − s)n−1

(n− 1)!

∣

∣

∣

∣

|v(s)| ds

+

∣

∣

∣

∣

∫ t2

t1

∣

∣

∣

∣

(t2 − s)n−1

(n− 1)!

∣

∣

∣

∣

|v(s)| ds

∣

∣

∣

∣

≤ |q(t1) − q(t2)|

+
1

(n− 1)!

(
∫ t1

0

∣

∣(t1 − s)n−1 − (t2 − s)n−1
∣

∣

2
ds

)1/2 (
∫ t2

0
h2

r(s) ds

)1/2

+ |p(t1) − p(t2)|



68 B.C. Dhage and A. Petruşel

≤ |q(t1) − q(t2)|

+
1

(n− 1)!

(
∫ a

0

∣

∣(t1 − s)n−1 − (t2 − s)n−1
∣

∣

2
ds

)1/2 (
∫ a

0
h2

r(s) ds

)1/2

+|p(t1) − p(t2)|

where

q(t) =

n−1
∑

i=0

xit
i

i!
and p(t) =

∫ t

0

(a− s)n−1

(n− 1)!
hr(s) ds.

Now the functions p and q are continuous on the compact interval J, hence
they are uniformly continuous on J. Hence we have

|u(t1) − u(t2)| → 0 as t1 → t2.

As a result
⋃

B(S) is an equicontinuous set in C(J,R). Now an application
of Arzelá-Ascoli theorem yields that B is totally bounded on C(J,R).

Step VI. Next we prove that B has a closed graph. Let {xn} ⊂ C(J,R)
be a sequence such that xn → x∗ and let {yn} be a sequence defined by
yn ∈ Bxn for each n ∈ N such that yn → y∗. We just show that y∗ ∈ Bx∗.

Since yn ∈ Bxn, there exists a vn ∈ S1
F (τxn) such that

yn(t) =

n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
vn(s) ds.

Consider the linear and continuous operator K : L1(J,R) → C(J,R) defined
by

Kv(t) =

∫ t

0

(t− s)n−1

(n− 1)!
vn(s) ds.

Now

∣

∣

∣

∣

∣

yn(t) −
n−1
∑

i=0

|xi|t
i

i!
− y∗(t) −

n−1
∑

i=0

|xi|t
i

i!

∣

∣

∣

∣

∣

≤ |yn(t) − y∗(t)|

≤ ‖yn − y∗‖ → 0 as n→ ∞.
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From Lemma 2.2 it follows that (K ◦ S1
G) is a closed graph operator and

from the definition of K one has

yn(t) −
n−1
∑

i=0

xit
i

i!
∈ (K ◦ S1

F (τxn)).

As xn → x∗ and yn → y∗, there is a v∗ ∈ S1
F (τx∗) such that

y∗ =

n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
v∗(s) ds.

Hence the multi B is an upper semi-continuous operator on C(J,R).

Step VII. Finally, we show that the set

E = {x ∈ X : λx ∈ Ax+Bx for some λ > 1}

is bounded.
Let u ∈ E be any element. Then there exists v1 ∈ S1

F (τx) and v2 ∈

S1
G(τx) such that

u(t) = λ−1
n−1
∑

i=0

xit
i

i!
+ λ−1

∫ t

0

(t− s)n−1

(n− 1)!
v1(s) ds

+ λ−1

∫ t

0

(t− s)n−1

(n− 1)!
v2(s) ds.

Then

|u(t)| ≤
n−1
∑

i=0

|xi|a
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
|v1(s)| ds

+

∫ t

0

(t− s)n−1

(n− 1)!
|v2(s)| ds

≤
n−1
∑

i=0

|xi|a
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!

(

k(s) ‖τu‖ + ‖F (s, 0‖
)

ds

+

∫ t

0

(t− s)n−1

(n− 1)!
φ(s)ψ(|τ(u(s))|) ds.
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Since τx ∈ [α, β],∀x ∈ C(J,R), we have

‖τx‖ ≤ ‖α‖ + ‖β‖ := D.

Therefore

|u(t)| ≤
n−1
∑

i=0

|xi|a
i

i!
+

an−1

(n− 1)!

∫ t

0
k(s)Dds+

an−1

(n− 1)!

∫ t

0
‖F (s, 0)‖ ds

+
an−1

(n− 1)!

∫ t

0
φ(s)ψ(|τ(u(s))|) ds.

Without loss of generality we may assume that |τu(t)| ≤ |u(t)| for all t ∈ J .
Then form the above inequality we obtain:

|u(t)| ≤
n−1
∑

i=0

|xi|a
i

i!
+

an−1

(n− 1)!
D

∫ 1

0
k(s) ds+

an−1

(n− 1)!

∫ 1

0
‖F (s, 0)‖ ds

+
an−1

(n− 1)!

∫ t

0
φ(s)ψ(|u(s)|) ds ≤ C1 + C2

∫ t

0
φ(s)ψ(|u(s)|) ds,

where

C1 =

n−1
∑

i=0

|xi|a
i

i!
+

an−1

(n− 1)!
(‖α‖ + ‖β‖)

(

‖k‖L1 + L
)

and C2 =
an−1

(n− 1)!
.

Let

w(t) = C1 + C2

∫ t

0
φ(s)ψ(|u(s)|) ds.

Then we have |u(t)| ≤ w(t) for all t ∈ J . Differentiating w.r.t. t, we obtain

w′(t) = C2φ(t)ψ(|u(t)|), a.e. t ∈ J, w(0) = C1.

This further implies that

w′(t) ≤ C2φ(t)ψ(w(t)), a.e. t ∈ J, w(0) = C1,
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that is,

w′(t)

ψ(w(t))
≤ C2φ(t) a.e. t ∈ J, w(0) = C1.

Integrating from 0 to t we get

∫ t

0

w′(s)

ψ(w(s))
ds ≤ C2

∫ t

0
φ(s).

By the change of variable,

∫ w(t)

C1

ds

ψ(s)
ds ≤ C2‖φ‖L1 <

∫

∞

C1

ds

ψ(s)
ds.

Now an application of the mean-value theorem yields that there exists a
point M such that

|u(t)| ≤ w(t) ≤M for all t ∈ J,

and so the set E is bounded in C(J,R). As a result the conclusion (ii) of
Theorem 2.2 does not hold. Hence the conclusion (i) holds and consequently
IVP (3) has a solution u on J. Next we show that u is also a solution
of the IVP (1) on J. First, we show that u ∈ [α, β]. Suppose not. Then
either α 6≤ u or u 6≤ β on some subinterval J ′ of J. If u 6≥ α, then there
exist t0, t1 ∈ J, t0 < t1 such that u(t0) = α(t0) and α(t) > u(t) for all
t ∈ (t0, t1) ⊂ J. From the definition of the operator τ it follows that

u(n)(t) ∈ F (t, α(t)) +G(t, α(t)) a.e. t ∈ J.

Then there exists a v1(t) ∈ F (t, α(t)) and v2(t) ∈ G(t, α(t)),∀t ∈ J with

u(n)(t) = v1(t) + v2(t) a.e. t ∈ J.

Integrating from t0 to t n times yields

u(t) −
n−1
∑

i=0

ui(0)(t − t0)
i

i!
=

∫ t

t0

(t− s)n−1

(n− 1)!
v1(s) ds+

∫ t

t0

(t− s)n−1

(n− 1)!
v2(s) ds.
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Since α is a lower solution of IVP (1), we have

u(t) =
n−1
∑

i=0

ui(0)(t− t0)
i

i!
+

∫ t

t0

(t− s)n−1

(n− 1)!
v1(s) ds

+

∫ t

t0

(t− s)n−1

(n− 1)!
v2(s) ds

≥
n−1
∑

i=0

αi(0)(t− t0)
i

i!
+

∫ t

t0

(t− s)n−1

(n− 1)!
α(s) ds

+

∫ t

t0

(t− s)n−1

(n− 1)!
α(s) ds

= α(t)

for all t ∈ (t0, t1). This is a contradiction. Similarly, if u 6≤ β on some
subinterval of J, then we also get a contradiction. Hence α ≤ u ≤ β on
J. As a result the IVP (3) has a solution u in [α, β]. Finally, since τx =
x,∀x ∈ [α, β], u is a required solution of the IVP (1) on J. This completes
the proof.

4. Existence of extremal solutions

In this section, we shall prove the existence of maximal and minimal solu-
tions of the FDI (1) under suitable monotonicity conditions on the multi-
functions involved in it. We equip the space C(J,R) with the order relation
≤ defined by the cone K in C(J,R) defined by

(8) K =
{

x ∈ C(J,R) | x(t) ≥ 0 ∀ t ∈ J
}

.

Thus “x ≤ y” if and only if y − x ∈ K. This order relation is equivalent to
the order relation defined in the previous section. It is known that the cone
K is normal in C(J,R). The details of cones and their properties may be
found in Heikkila and Lakshmikantham [10].

Let A,B ∈ Pcl(C(J,R)). Then by A ≤ B we mean a ≤ b for all a ∈ A

and b ∈ B. Thus a ≤ B implies that a ≤ b for all b ∈ B in particular, if
A ≤ A, then it follows that A is a singleton set.
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Definition 4.1. Let X be an ordered Banach space. A mapping T : X →
Pcl(X) is called isotone increasing if x, y ∈ X with x < y, then we have that
Tx ≤ Ty.

We use the following fixed point theorem in the proof of main existence
result of this section.

Theorem 4.2 (Dhage [5]). Let [a, b] be an order interval in a Banach space

and let A,B : [a, b] → Pcl(X) be two multi-valued operators satisfying

(a) A is a multi-valued contraction.

(b) B is completely continuous,

(c) A and B are isotone increasing, and

(d) Ax+Bx ⊂ [a, b]∀ x ∈ [a, b].

Further, if the cone K in X is normal, then the operator inclusion x ∈
Ax+Bx has the least fixed point x∗ and the greatest fixed point x∗ in [a, b].
Moreover, x∗ = limn xn and x∗ = limn yn, where {xn} and {yn} are the

sequences in [a, b] defined by

xn+1 ∈ Axn +Bxn, x0 = a and yn+1 ∈ Ayn +Byn, y0 = b.

We need the following definition in the sequel.

Definition 4.3. A solution xM of the FDI (1) is said to be maximal if x is
any other solution of the FDI (1) on J , then we have x(t) ≤ xM (t) for all
t ∈ J . Similarly, a minimal solution of the FDI (1) can be defined.

We consider the following assumptions in the sequel.

(H7) The multi-functions F (t, x) and G(t, x) are nondecreasing in x almost
everywhere for t ∈ I, i.e. it x < y, then F (t, x) ≤ F (t, y) for all
x, y ∈ R.

Theorem 4.4. Assume that hypotheses (H1)–(H4) and (H6)–(H7) hold. Then

the FDI (1) has minimal and maximal solutions on J .

Proof. Let X = C(J,R) and consider the order interval [α, β] in X which
is well defined in view of hypothesis (H7). Define two operators A,B :
[α, β] → Pcl(X) by (4) and (5) respectively. It can be shown as in the
proof of Theorem 3.1 that A and B define the multi-valued operators
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A : [α, β] → Pcl,cv,bd(X) and B : [α, β] → Pcp,cv(X). It can be shown
similarly that A a multi-valued contraction while B is completely continu-
ous on [α, β]. We shall show that A and B are isotone increasing on [α, β].
Let x ∈ [α, β] be such that x ≤ y, x 6= y. Then by (H7), we have

Ax(t) =

{

u(t) : u(t) =

∫ t

0

(t− s)n−1

(n− 1)!
v(s) ds, v ∈ S1

F (x)

}

≤

{

u(t) : u(t) =

∫ t

0

(t− s)n−1

(n− 1)!
v(s) ds, v ∈ S1

F (y)

}

= Ay(t)

for all t ∈ J . Hence Ax ≤ Ay. Similarly, by (H7), we have

Bx(t) =

{

u(t) : u(t) =
n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
v(s) ds, v ∈ S1

F (x)

}

≤

{

u(t) : u(t) =
n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
v(s) ds, v ∈ S1

F (y)

}

= By(t)

for all t ∈ J . Hence Bx ≤ By. Thus A and B are isotone increasing on
[a, b]. Finally, let x ∈ [α, β] be any element. Then by (H6),

a ≤ Aa+Ba ≤ Ax+Bx ≤ Ab+Bb ≤ b

which shows that Ax+Bx ∈ [α, β] for all x ∈ [α, β]. Thus the multi-valued
operator A and B satisfy all the conditions of Theorem 4.2 to yield that the
operator inclusion and consequently the FDI (1) has maximal and minimal
solutions on J . This completes the proof.

5. Conclusion

Note that when F (t, x) ≡ 0 in Theorem 3.1 we obtain the existence theorem
for the IVP

(9)

{

x(n)(t) ∈ G(t, x(t)) a.e. t ∈ J,

x(i)(0) = xi ∈ R
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proved in Dhage et al. [7]. Again when F (t, x) ≡ 0 and n = 2, Theorem 3.1
reduces to the existence result proved in Benchohra [3]. We also mention that
our existence result for extremal solutions includes the results of Agarwal
et al. [1] and Dhage and Kang [6], where a much stronger condition is used
(i.e., the continuity of the multi-function).
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