ArticleOriginal scientific text
Title
On the Picard problem for hyperbolic differential equations in Banach spaces
Authors 1
Affiliations
- Institute of Mathematics and Physics, Technical University of Warsaw, Branch Płock, ul. Łukasiewcza 17, 09-400 Płock, Poland
Abstract
B. Rzepecki in [5] examined the Darboux problem for the hyperbolic equation on the quarter-plane x ≥ 0, y ≥ 0 via a fixed point theorem of B.N. Sadovskii [6]. The aim of this paper is to study the Picard problem for the hyperbolic equation using a method developed by A. Ambrosetti [1], K. Goebel and W. Rzymowski [2] and B. Rzepecki [5].
Keywords
boundary value problem, fixed point theorem, functional-integral equation, hyperbolic equation, measure of noncompactness
Bibliography
- A. Ambrosetti, Un teorema di essistenza per le equazioni differenziali nagli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360.
- K. Goebel, W. Rzymowski, An existence theorem for the equations x' = f(t,x) in Banach space, Bull. Acad. Polon. Sci., Sér. Sci. Math. 18 (1970), 367-370.
- P. Negrini, Sul problema di Darboux negli spazi di Banach, Bolletino U.M.I. (5) 17-A (1980), 156-160.
- B. Rzepecki, Measure of Non-Compactness and Krasnoselskii's Fixed Point Theorem, Bull. Acad. Polon. Sci., Sér. Sci. Math. 24 (1976), 861-866.
- B. Rzepecki, On the existence of solution of the Darboux problem for the hyperbolic partial differential equations in Banach Spaces, Rend. Sem. Mat. Univ. Padova 76 (1986).
- B.N. Sadovskii, Limit compact and condensing operators, Russian Math. Surveys 27 (1972), 86-144.