Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a general existence theorem on the generalized variational inequality problem GVI(T,C,ϕ) is derived by using our new versions of Nikaidô's coincidence theorem, for the case where the region C is noncompact and nonconvex, but merely is a nearly convex set. Equipped with a kind of V₀-Karamardian condition, this general existence theorem contains some existing ones as special cases. Based on a Saigal condition, we also modify the main theorem to obtain another existence theorem on GVI(T,C,ϕ), which generalizes a result of Fang and Peterson.
Kategorie tematyczne
Rocznik
Tom
Numer
Strony
5-19
Opis fizyczny
Daty
wydano
2003
otrzymano
2002-10-25
Twórcy
autor
- Center for General Education, National Taipei University of Technology, Taipei, Taiwan, Republic of China
autor
- Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan, Republic of China
Bibliografia
- [1] E.G. Begle, Locally connected spaces and generalized manifolds, Amer. Math. J. 64 (1942), 553-574.
- [2] E.G. Begle, The Vietoris mapping theorem for bicompact space, Ann. Math. 51 (1950), 534-543.
- [3] E.G. Begle, A fixed point theorem, Ann. Math. 51 (1950), 544-550.
- [4] F.E. Browder, Coincidence theorems, minimax theorems, and variational inequalities, Contemp. Math. 26 (1984), 67-80.
- [5] D. Chan and J.S. Pang, The generalized quasi-variational inequality problem, Math. Oper. Res. 7 (1982), 211-222.
- [6] L.J. Chu and C.Y. Lin, New versions of Nikaidô's coincidence theorem, Discuss. Math. DICO 22 (2002), 79-95.
- [7] S.C. Fang and E.L. Peterson, Generalized variational inequalities, J. Optim. Th. Appl. 38 (3) (1982), 363-383.
- [8] H. Halkin, Finite convexity in infinite-dimensional spaces, Proc. of the Colloquium on Convexity, Copenhagen (1965), W. Fenchel (ed.), Copenhagen (1967), 126-131.
- [9] G. Isac, Complementarity problems, Lecture Notes in Math. 1528, Springer-Verlag, New York, (1992).
- [10] S. Karamardian, The complementarity problem, Math. Program. 2 (1972), 107-129.
- [11] B. Knaster, C. Kuratowski and S. Mazurkiewicz, Ein beweis des fixpunktsatzes fur n-dimensionale simplexe, Fundamenta Math. 14 (1929) 132-137.
- [12] L.J. Lin, Pre-Vector variational inequalities, Bull. Australian Math. Soc. 53 (1995), 63-70.
- [13] G.J. Minty, On the maximal domain of a monotone function, Michigan Math. J. 8 (1961), 135-137.
- [14] H. Nikaidô, Coincidence and some systems of inequalities, J. Math. Soc., Japan 11 (1959), 354-373.
- [15] R.T. Rockafellar, On the virtual convexity of the domain and range of a nonlinear maximal monotone operator, Math. Ann. 185 (1970), 81-90.
- [16] R. Saigal, Extension of the generalized complemetarity problem, Math. of Oper. Res. 1 (3) (1976), 260-266.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmdico_1042