ArticleOriginal scientific text

Title

Best approximations, fixed points and parametric projections

Authors 1

Affiliations

  1. University of Perugia, Department of Mathematics and Computer Science, Via Vanvitelli, 1 - 06123 Perugia, Italy

Abstract

If f is a continuous seminorm, we prove two f-best approximation theorems for functions Φ not necessarily continuous as a consequence of our version of Glebov's fixed point theorem. Moreover, we obtain another fixed point theorem that improves a recent result of [4]. In the last section, we study continuity-type properties of set valued parametric projections and our results improve recent theorems due to Mabizela [11].

Keywords

fixed point, parametric projection, best approximation, upper semicontinuous, partially closed graph, f-approximatively compact, Oshman space

Bibliography

  1. B. Brosowsky and F.N. Deutsch, Radial continuity of valued metric projections, J. Approx. Theory 11 (1974), 236-253.
  2. B. Brosowsky, F.N. Deutsch and G. Nurnberger, Parametric approximation, J. Approx. Theory 29 (1980), 261-277.
  3. T. Cardinali and F. Papalini, Sull'esistenza di punti fissi per multifunzioni a grafo debolmente chiuso, Riv. Mat. Univ. Parma (4) 17 (1991), 59-67.
  4. T. Cardinali and F. Papalini, Fixed point theorems for multifunctions in topological vector spaces, J. Math. Anal. Appl. 186 (3) (1994), 769-777.
  5. F. Deutsch, Theory of best approximation in normed linear spaces, Mimeographed notes, 1972.
  6. K. Fan, Extensions of two fixed point theorems of F.E. Browder, Math. Z. 112 (1969), 234-240.
  7. N.I. Glebov, On a generalization of the Kakutani fixed point theorem, Soviet Math. Dokl. 10 (1969), 446-448.
  8. P. Govindarajulu and D.V. Pai, On properties of sets related to f-projections, J. Math. Anal. Appl. 73 (1980), 457-465.
  9. G. Köthe, Topological vector spaces (I), Springer-Verlag, Berlin, Heidelberg, New York 1969.
  10. T.C. Lin, A note on a theorem of Ky Fan, Canad. Math. Bull. 22 (1979), 513-515.
  11. S. Mabizela, Upper semicontinuity of parametric projection, Set Valued Analysis 4 (1996), 315-325.
  12. T.D. Narang, On f-best approximation in topological spaces, Archivum Mathematicum, Brno 21 (4) (1985), 229-234.
  13. T.D. Narang, A note of f-best approximation in reflexive Banach space, Matem. Bech. 37 (1985), 411-413.
  14. E.V. Oshman, On the continuity of metric projection in Banach space, Math. USSR Sb. 9 (1969), 171-182.
  15. S. Reich, Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl. 62 (1978), 104-113.
  16. V.M. Seghal and S.P. Singh, A theorem on the minimization of a condensing multifunction and fixed points, J. Math. Anal. Appl. 107 (1985), 96-102.
  17. I. Singer, The theory of best approximation and functional analysis, Regional Conference Series in Applied Math., Philadelphia 1974.
  18. C. Waters, Ph. D. thesis, Univ. of Wyoming 1984.
  19. E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag 1990.
  20. E. Zeidler, Variational methods and optimization III, Springer-Verlag 1990.
Pages:
243-260
Main language of publication
English
Received
2002-12-30
Published
2002
Exact and natural sciences