ArticleOriginal scientific textA class of retracts in
Title
A class of retracts in with some applications to differential inclusion
Authors 1, 1
Affiliations
- Faculty of Mathematics and Information Sciences, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warszawa, Poland
Bibliography
- G. Bartuzel and A. Fryszkowski, On existence of solutions for inclusions Δu ∈ F(x,∇u), in: R. März, ed., Proc. of the Fourth Conf. on Numerical Treatment of Ordinary Differential Equations, pages 1-7, Sektion Mathematik der Humboldt Universität zu Berlin, Berlin, Sep. 1984.
- G. Bartuzel and A. Fryszkowski, Stability of the principal eigenvalue of the Schrödinger type problems for differential inclusions, Toplological Methods in Nonlinear Analysis 16 (1) (2000), 181-194.
- G. Bartuzel and A. Fryszkowski, A topological property of the solution set to the Schrödinger differential inclusions, Demomstratio Mathematicae 25 (3) (1995), 411-433.
- F.D. Blasi and G. Pianigiani, Solution sets of boundary value problems for nonconvex differential inclusion, Oct. 1992, preprint n 115.
- A. Bressan, A. Cellina and A. Fryszkowski, A class of absolute retracts in spaces of integrable functions, Proc. AMS 112 (1991), 413-418.
- A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1986) 163-174.
- N. Dunford and J.T. Schwartz, Linear Operators, Wiley, New York 1958.
- Y. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators, Operator Theory, Advances and Applications, Vol. 89, Birkhäuser, Basel, Boston, Berlin 1996.
- A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), 163-174.
- D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit Besonderer Berücksichtigung der Angewendungsgebiete, Springer, Berlin 1989.
- K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. 13 (1965) 397-403.