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1. Introduction

In this paper, we consider a class of controlled stochastic impulsive systems
where the principal operator is the generator of a C0-semigroup which is
impulsively perturbed multiplicatively. A nonlinear drift (additive) term
driven by a vector measure also represents impulsive behavior of the system.
The third (drift) term represents control, again generated by a stochastic
vector measure u which may contain both continuous and impulsive forces.
The diffusion term is given by a multivalued map. Symbolically, the system
is governed by the differential inclusion

dx(t)−Ax(t)dβ(t)− F (t, x)dµ(t)−G(t, x)du ∈ C(t, x)dW, x(0) = ξ,(1)

where W is a cylindrical Brownian motion defined on some probability space
(Ω,F , P ) and taking values in a Hilbert space U . We have recently shown
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[2] that under certain assumptions on the pair (A, β(·)), the nonlinear maps
F, G and the vector measures µ, u and the multivalued operator C, the
stochastic inclusion has a nonempty set of solutions. In a recent paper
[1], we have studied the following system of evolution inclusions in general
Banach spaces.

dx−Axdβ ∈ F (t, x)dt, t ≥ 0, x(0) = ξ(2)

dx−Axdβ −B(t, x)dt ∈ C(t, x)dµ, t ≥ 0, x(0) = ξ,(3)

where F and C are multivalued maps. There, in the context of general Ba-
nach spaces, we proved the existence and regularity properties of solutions
for such systems under mild assumptions on the operators and multival-
ued maps. We shall freely use the basic results of the papers [1] and [2],
in particular the results related to the transition operator corresponding to
the generator (A, β(·)) and the existence result for equation (1). Here we
assume that the operator A is the infinitesimal generator of a C0-semigroup
in the Hilbert space H; and F, G are suitable nonlinear operators, C a mul-
tivalued map, and β is generally a nonnegative nondecreasing (except for A
generating groups) scalar valued function of bounded variation on bounded
intervals of R0 ≡ [0,∞) and µ and the control u are suitable vector measures
on the sigma algebra of Borel subsets B0 of R0. These models are much more
general and cover all classical models of impulsive systems as widely used in
the literature [4, 9, 12, 14, 17]. In fact they also cover the models used to
develop control theory in recent years like [3–4, 6, 8]. The admissible con-
trols considered in [7, 8] are deterministic vector measures and so may also
be impulsive. Here in this paper, the controls are stochastic vector measures
as described later in details.

Recently we have considered stochastic evolution inclusions of the form
(1) in [2], where we proved the existence of solutions and studied some
topological properties of the solution set. Here we are interested in the
question of existence of optimal controls presented later in the paper.

Examples of impulsive systems can be found in many engineering appli-
cations such as optical communication, pulsed radars, spacecraft antennas
etc., see [1].

The rest of the paper is organized as follows. In Section 2, basic no-
tations are introduced. In Section 3, we present some results from [1] on
the basic evolution operator associated with the pair (A, β(·)) and its prop-
erties. This is used to construct solutions of non homogeneous Cauchy
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problems like

dx(t) = Ax(t)dβ(t) + f(t), t ≥ 0, x(0) = ξ.(4)

In Section 4 we consider the questions of existence, uniqueness, and reg-
ularity properties of solutions of stochastic evolution equations associated
with the evolution inclusions. In Section 5, stochastic differential inclusions
are considered. For convenience of the reader, here we present some recent
results of the author [2] on the question of existence of a nonempty set of
solutions. The main contribution of this paper is presented in Section 6.
Before we study the control problems and prove the existence of optimal
controls we present some simple examples of potential admissible controls
from the class of adapted stochastic vector measures.

2. Some notations and terminologies

For any metrizable topological space Z, 2Z \ ∅ will denote the class of all
nonempty subsets of Z, and c(Z)(cb(Z), cc(Z), cbc(Z), ck(Z)), denotes the
class of nonempty closed (closed bounded, closed convex, closed bounded
convex, compact convex) subsets of Z.

Let (Ω,B) be an arbitrary measurable space and Z a Polish space. A
multifunction G : Ω −→ 2Z \∅ is said to be measurable (weakly measurable)
if for every closed (open) set C ⊂ Z the set

G−1(C) ≡ {ω ∈ Ω : G(ω) ∩ C 6= ∅} ∈ B.

Let d be any metric induced by the topology of the Polish space Z. It is
known that the measurability of the multifunction G is equivalent to the
measurability of the function ω → d(x,G(ω)) for every x ∈ Z. Even more,
it is also equivalent to the graph measurability of G in the sense that

{(x, ω) ∈ Z × Ω : x ∈ G(ω)} ∈ B(Z)× B

where B(Z) denotes the sigma algebra of Borel sets of Z. Let X, Y be any
two topological spaces and G : X −→ c(Y ) be a multifunction. G is said to
be upper semicontinuous (USC) if for each set C ∈ c(Y )

G−1(C) ≡ {x ∈ X : G(x) ∩ C 6= ∅} ∈ c(X).
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If Y is a metric space with a metric d, we can introduce a metric dH on
c(Y ), called the Hausdorff metric, as follows:

dH(K,L) ≡ max{sup{d(k, L), k ∈ K}, sup{d(K, `), ` ∈ L}}

where d(x, K) ≡ inf{d(x, y), y ∈ K} is the distance of x from the set K. If Y
is a complete metric space, then (c(Y ), dH) is also a complete metric space.

Let E be a Banach space and let Mc(J,E) denote the space of bounded
countably additive vector measures on the sigma algebra B of subsets of the
set J ⊂ R0 ≡ [0,∞) with values in the Banach space E, furnished with the
strong total variation norm. That is, for each µ ∈Mc(J,E), we write

|µ|v ≡ |µ|(J) ≡ sup
π

{∑
σ∈π

‖ µ(σ) ‖E

}

where the supremum is taken over all partitions π of the interval J into
a finite number of disjoint members of B. With respect to this topology,
Mc(J,E) is a Banach space. For any Γ ∈ B define the variation of µ on Γ
by

V (µ)(Γ) ≡ V (µ,Γ) ≡ |µ|(Γ).

Since µ is countably additive and bounded, this defines a countably additive
bounded positive measure on B. In the case E = R, the real line, we have the
space of real valued signed measures. We denote this by simply Mc(J) in
place of Mc(J,R). Clearly, for ν ∈Mc(J), V (ν) is also a countably additive
bounded positive measure. For uniformity of notation we use λ to denote
the Lebesgue measure. For any Banach space X, we let X∗ denote the dual.
Strong convergence of a sequence {ξn} ∈ X to an element ξ ∈ X is denoted
by ξn

s−→ ξ and its weak convergence by ξn
w−→ ξ. For any pair of Banach

spaces X,Y , L(X,Y ) will denote the space of bounded linear operators
from X to Y.

For any real Banach space X, and any arbitrary set J , the space of
all bounded X valued functions defined on J and denoted by Bb(J,X) and
furnished with the sup norm topology,

‖ z ‖0≡ sup{‖ z(t) ‖X , t ∈ J},
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is a Banach space. If X is separable and J is furnished with the sigma
algebra BJ of Borel subsets of the set J, then the family B(J,X) of bounded
Borel measurable functions, furnished with the same sup norm topology, is a
closed subspace of Bb(J,X) and hence a Banach space also. In fact, B(J,X)
is given by the uniform limits, in the topology of Bb(J,X), of characteristic
functions of sets from BJ with values from any countable set dense in X.
We use PWC(J,X) to denote the class of all bounded piece wise continuous
functions with values in X and furnished with the same topology. Clearly,
this is a dense linear subspace of B(J,X).

3. Basic evolution operator

We start with the Cauchy problem

dx(t) = Ax(t)dβ(t), t ≥ 0, x(0) = ξ.(5)

Let D denote the collection of an ordered sequence of discrete points from
R0 given by

D ≡ {0 = t0 < t1 < t2, · · · tn < tn+1, · · ·n ∈ N0}
and let S denote the step function

S(t) =

{
1 if t ≥ 0;
0, otherwise.

Without loss of generality we may assume that A is the infinitesimal gener-
ator of a C0-semigroup of contraction T (t), t ≥ 0, in a Banach space X and
that the function β is given by

β(t) ≡ t +
∑

k≥0

αkS(t− tk), t ≥ 0, tk ∈ D,(6)

where generally αk ∈ R ∪ {+/−)∞}, with α0 = 0. Define the intervals
σk ≡ [tk, tk+1); k ∈ N0 and note that

R0 =
⋃

k≥0

σk.

In a recent paper [1], it was shown that, under some reasonable assumptions,
the pair (A, β(·)) generates an evolution operator,

Uβ(t, s), 0 ≤ s ≤ t < ∞,
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in X. This is reproduced below. For arbitrary t ∈ R0, define the following
integer valued function

i(t) ≡ k, for t ∈ σk, k ∈ N0.

Using this notation one can express the evolution operator corresponding to
the pair (A, β) [Ref. 1] as

Uβ(t, r) ≡
i(t)∑

`=0

( i(t)∏

k=`+1

(I − αkA)−1
)

χσ`
(r)T (t− r),(7)

for any t ∈ R0 and 0 ≤ r < t, where χσ denotes the indicator function of
the set σ.

From the expression (7), it is clear that for r = 0 all the terms except
the one with ` = 0 vanish and hence

Uβ(t, 0) =
( i(t)∏

k=1

(I − αkA)−1
)

T (t).(8)

The following result is fundamental and can be found in [1].

Lemma 3.1. Consider the system (5) and suppose A is the infinitesimal
generator of a C0-semigroup of contractions T (t), t ≥ 0 in the Banach space
X and the function β is given by the expression (6) where the coefficients
{αk} are nonnegative with α0 = 0. Then, there exists a unique evolution
operator Uβ satisfying the following properties:

(P1): t → Uβ(t, r), t > r is continuous from the right in the strong operator
topology in X; that is, s− limt↓r Uβ(t, r)ξ = ξ, ξ ∈ X.

(P2): s− limt↑τ>r Uβ(t, r)ξ exists∀ ξ ∈ X and τ > r.

(P3): ‖ Uβ(t, s)ξ ‖≤‖ ξ ‖, ∀ ξ ∈ X, and 0 ≤ s ≤ t < ∞.

(P4): r → gt(r) ≡ Uβ(t, r)ξ, 0 ≤ r ≤ t, is piecewise continuous having simple
discontinuities at r ∈ {tk, tk < t, k ≥ 1}.

(P5): Uβ(t, s)Uβ(s, r) = Uβ(t, r) ∀ 0 ≤ r < s < t < ∞.

Proof. See [1].

A similar result holds for groups, see [1, 2].
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4. Stochastic evolution equations

Let (Ω,F ,Ft ↑, t ≥ 0, P ) denote a complete filtered probability space with
Ft, t ≥ 0, denoting an increasing family of complete sub sigma algebras
of the sigma algebra F . For any F-measurable random variable z, we use
the standard notation Ez to denote the integral of z with respect to the
probability measure P , that is,

Ez =
∫

Ω
z(ω)P (dω).

Let U,H be any pair of separable Hilbert spaces and let LHS(U,H) denote
the space of Hilbert-Schmidt operators from U to H furnished with the
scalar product and the associated norm

< B, C >≡ Tr(BC∗), and ‖ B ‖HS =
√

Tr(BB∗)

respectively. It is easy to show that Y ≡ LHS(U,H) is a separable Hilbert
space. Assuming that Y is furnished with its topological Borel field B(Y ),
we have a measurable space (Y,B(Y )). We consider random variables {σ}
defined on the probability space (Ω,F , P ) and taking values from Y =
LHS(U,H) In fact, we are more interested in stochastic processes taking
values from the separable Hilbert space Y.

All the random processes considered in this paper are assumed to be
adapted to the filtration Ft, t ≥ 0. Let J ≡ [0, a] denote a finite interval and
P the σ-algebra of progressively measurable subsets of the set J × Ω. Let
L2(P, Y ) ≡ L2(P,LHS(U,H)) denote the class of progressively measurable
random processes taking values from the space of Hilbert-Schmidt opera-
tors Y ≡ LHS(U,H) with square integrable Hilbert-Schmidt norms. For
convenience of presentation and to emphasize time we denote this by

M2,2(J,LHS(U,H)) ≡ L2(P,LHS(U,H))

or briefly as
M2,2(J, Y ) ≡ L2(P, Y ).

Its topology is induced by the scalar product

< K, L > ≡ E

∫

J
Tr(K(t)L∗(t))dt,
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where L∗ denotes the adjoint of the operator L. Clearly, the norm is given
by

‖ K ‖≡
(∫

J
E{‖ K(t) ‖2

HS}dt
)1/2

.

With respect to this norm topology, it is again a Hilbert space. We shall
also use the notation M∞,2(J,H) for the space L∞(J, L2(Ω,H)) of all pro-
gressively measurable random processes with values in H having essentially
bounded second moments. This is furnished with the norm topology

‖ x ‖≡ esssup
{√

E ‖ x(t) ‖2
H , t ∈ J

}
.

With respect to this topology M∞,2(J,H) is a Banach space. For initial
states we choose the Hilbert space L2(F0,H) and denote this by M2(H).
Note that this consists of all H-valued F0-measurable random variables hav-
ing finite second moments. Since F0 is complete, this is a closed subspace
of the Hilbert space L2(F ,H) and hence a Hilbert space. For the study
of the differential inclusion (1), we need some basic results. Before we can
consider the Differential Inclusion (1), we must consider the stochastic dif-
ferential equation,

dx(t) = Ax(t)dβ(t) + F (t, x)dµ(t) + L(t)dW, x(0) = ξ,(9)

where L is a suitable operator valued random process to be defined shortly.
Let H,U be any pair of separable Hilbert spaces as introduced above and
E an arbitrary Hilbert space. The pair (A, β(·)) is as described in Section 3
and µ is any countably additive E valued vector measure of bounded total
variation. The process W ≡ {W (t), t ≥ 0} with P (W (0) = 0) = 1, is a
cylindrical Brownian motion with values in U. We quote the following result
from [2] without proof.

Theorem 4.1. Suppose A and β satisfy the assumptions of Lemma 3.1
with X replaced by H. Let F : J ×H −→ L(E, H) be measurable in t on J
and Lipschitz in x on E and that there exists a K ∈ L+

2 (J, |µ|), so that the
following growth and Lipschitz conditions hold

‖ F (t, x) ‖L(E,H)≤ K(t)(1 + |x|H)(10)

‖ F (t, x)− F (t, y) ‖L(E,H)≤ K(t) |x− y|H .(11)
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Then, for every ξ ∈ M2(H), and every L ∈ M2,2(J,LHS(U,H)), independent
of {ξ}, equation (9) has a unique mild solution x ∈ M∞,2(J,H).

Proof. See [2].

Remark. It is clear that the solution to equation (9) is certainly not con-
tinuous. However, if all the jumps of β are zero and the vector measure
µ is absolutely continuous with respect to the Lebesgue measure, that is,
E has RNP with respect to Lebesgue measure and that µ is λ continuous,
then the solution to (9) has continuous trajectories almost surely. Since
L ∈ M2,2(J,L(U,H)), this follows from the classical results of Da Prato and
Zabczyk [9, Theorem 7.4].

Remark. If β is as given and the vector measure µ has RND (Radon-
Nikodym derivative) with respect to the Lebesgue measure, then the solution
x ∈ PWC(J,H) almost surely.

Corollary 4.2. Under the assumptions of Theorem 4.1, for fixed ξ ∈
M2(H), the map L −→ x is Lipschitz continuous from M2,2(J,LHS(U,H))
to M∞,2(J,H) satisfying

‖ x1 − x2 ‖2
M∞,2(J,H) ≤ c̃

{
E

∫

J
‖ L1(s)− L2(s) ‖2

Y ds

}
,(12)

for some constant c̃ finite.

Remark. It would be interesting to consider t → β(t) to be a nonnega-
tive nondecreasing random process of bounded variation on any finite inter-
val and prove the existence of a family of measurable evolution operators,
Uβ(t, s), 0 ≤ s ≤ t < ∞, giving the transition operator for the problem (5).

5. Stochastic differential inclusions

Often, deterministic systems governed by parabolic (or hyperbolic) varia-
tional inequalities, systems with uncertain parameters, systems with dis-
continuous vector fields, and control systems can be modeled as differential
inclusions. The same remark applies to stochastic systems as well. Stochas-
tic differential inclusions of the classical type, like

dx ∈ Axdt + F (t, x)dt + C(t, x)dW,
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were studied by the author in [6] where the existence of solutions in an appro-
priate weak sense was established under different situations. For example,
cases like F multivalued and C single valued, F single valued and C mul-
tivalued and both multivalued were considered under the assumptions that
the multivalued maps are weakly inward and α-condensing where α denotes
the Kuratowski’s measure of non compactness. Also nonlinear systems with
A monotone hemicontinuous with respect to the so called Gelfand triple
V ↪→ H ↪→ V ∗ were covered. Here we consider the differential inclusion
given by

dx ∈ Axdβ + F (t, x)dµ + C(t, x)dW(13)

and its controlled version given by inclusion (1). Clearly, this model is
significantly different from the classical ones and in fact generalizes them.

Recall that we have used Y to denote the Hilbert space LHS(U,H)
with the scalar product as defined at the beginning of Section 4. Since
we have assumed that both U and H are separable Hilbert spaces, it is
clear that Y ≡ LHS(U,H) is also a separable Hilbert space and therefore,
a complete separable metric space with the metric induced by the Hilbert-
Schmidt norm. According to our earlier notation, L2(P, Y ) = M2,2(J, Y ).
Let cb(Y ) denote the class of nonempty closed bounded subsets of Y and dH

denote the Hausdorff metric on it. It is easy to verify that cb(Y ), furnished
with this metric, is a complete separable metric space and hence a Polish
space.

The multivalued diffusion C is a map

C : J ×H −→ cb(Y ).(14)

We need the notion of solution for stochastic differential inclusions as intro-
duced in [6]. By a solution, of course, we always mean a mild solution.

Definition 5.1. An element x ∈ M∞,2(J,H) is a (mild) solution of the
evolution inclusion (13), if there exists an L ∈ M2,2(J, Y ) such that x is a
(mild) solution of the evolution equation

dx = Axdβ + F (t, x)dµ + L(t)dW, t ≥ 0, x(0) = ξ,(15)
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and

L(t) ∈ C(t, x(t)) a.e. t ∈ J, P − a.s.(16)

For a fixed ξ ∈ M2(H), let S denote the solution map L −→ x(L)(·) ≡
S(L)(·) corresponding to the system (15). It follows from Theorem 4.1, that
equation (15) has a unique mild solution for each given L ∈ M2,2(J, Y ).
Thus it is evident from the definition, that if the pair {L, x} satisfies the
relations (15) and (16), and S is the solution map as introduced above, L
must satisfy the following inclusion relation

L(t) ∈ C(t,S(L)(t)), a.e. t ∈ J, P − a.s.

In other words, the question of existence of a solution of the stochastic
evolution inclusion (13) is equivalent to the question of existence of a fixed
point of the multivalued map Ĉ in the Hilbert space L2(P, Y ) ≡ M2,2(J,H),
where

Ĉ(L) ≡ {Γ ∈ L2(P, Y ) : Γ(t) ∈ C(t,S(L)(t)) a.e., P − a.s}.(17)

Theorem 5.2. Suppose 0 is not an atom of µ and the pair (A, β) satisfies
the assumptions of Lemma 3.1 and F satisfies the assumptions of Theorem
4.1, and the multifunction C satisfies the following assumptions:

(C1): C : J ×H −→ cb(Y ), measurable in t on J for each fixed x ∈ H, and,
for almost all t ∈ J, it is (USC) upper semi continuous on H,

(C2): there exists an `0 ∈ L+
2 (J) such that

inf{‖ L ‖Y , L ∈ C(t, e)} ≤ `0(t)(1 + |e|H), t ∈ J,

(C3): there exists an ` ∈ L+
2 (J) such that

dH(C(t, x), C(t, y)) ≤ `(t)|x− y|H , ∀ x, y ∈ H, t ∈ J.

Then for each x(0) = ξ ∈ M2(H), the evolution inclusion (13) has at least
one solution x ∈ M∞,2(J,H).

Proof. See [2].
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Solution Set

In general, differential inclusions possess many solutions. Hence it is natural
to consider the solution set. Consider the system (13) with a given ξ ∈
M2(H). Let Fix(Ĉ) denote the set of fixed points of the multifunction Ĉ
mapping L2(P, Y ) to 2L2(P,Y ). That is,

Fix(Ĉ) ≡ {L ∈ L2(P, Y ) : L ∈ Ĉ(L)}.(18)

It is clear from Theorem 5.2 that Fix(Ĉ) 6= ∅. Let Xξ denote the set of
solutions of the evolution inclusion (13) corresponding to the initial state
ξ ∈ M2(H). Define the linear operator K mapping M2,2(J, Y ) to M∞,2(J,H)
by

K(L)(t) ≡
∫ t

0
Uβ(t, s)L(s)dW (s), t ∈ J.

Clearly, this is a bounded linear operator from M2,2(J, Y ) to M∞,2(J,H)
and for each L ∈ M2,2(J, Y ) we have

E|K(L)(t)|2H =
∫ t

0
E ‖ Uβ(t, s)L(s) ‖2

Y ds, t ∈ J.

It follows from this thatK is an isometric map from M2,2(J, Y ) to M∞,2(J,H).
Using the properties of the transition operator one can also verify that the
operator K is also injective.

The following result has important applications in the study of optimal
controls. From now on we assume that x(0) = ξ ∈ M2(H) is fixed.

Corollary 5.3. Suppose the assumptions of Theorem 5.2 hold and that
the linear operator K maps every closed subset of M2,2(J, Y ) into a closed
subset of M∞,2(J,H). Then, the solution set X of the evolution inclusion
(13), corresponding to a fixed initial state x(0) = ξ ∈ M2(H), is a nonempty
sequentially closed subset of M∞,2(J,H).

Proof. See [2].

Remark. The assumption that the linear operator K maps closed subsets
of M2,2(J, Y ) into closed subsets of M∞,2(J,H) holds if the range of the
operator K is closed.

Another assumption under which the Corollary is valid is as follows.
The multifunction

Γt(s) ≡ {Uβ(t, s)L(s), L ∈ Fix(Ĉ)}, s ≤ t, t ∈ J
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is Ft measurable with values from the class of nonempty closed subsets of
M2,2(Jt, Y ) where Jt ≡ [0, t], t ∈ J. In this case one invokes the theory of
measurable selections.

Remark. Even though the solution set X is closed, as stated in Corol-
lary 5.3, it may not be bounded. For boundedness we need an additional
condition on the multifunction C. This is given in the following theorem.

Theorem 5.4. Consider the system (13) and suppose the assumptions of
Theorem 5.2 hold. Further suppose that C satisfies the following growth
condition: there exists a ζ ∈ L+

2 (J) such that

sup{‖ L ‖Y : L ∈ C(t, x)} ≤ ζ(t)(1 + |x|H) ∀ x ∈ H.

Then the solution set X of the evolution inclusion (13) is a closed bounded
subset of M∞,2(J,H).

Proof. See [2].

6. Optimal impulsive control

The results mentioned above can be easily extended to include the controlled
system,

dx ∈ Axdβ + F (t, x)dµ + G(t, x)du + C(t, x)dW, x(0) = ξ,(19)

where u belongs to a suitable class of vector measures representing controls.
The operators {A, β, F,C} are as in the previous sections. Let V be another
Hilbert space, or, in general, a reflexive Banach space. The operator G is a
single valued map mapping J ×H to L(V, H) satisfying similar properties
with respect to the vector measure u ∈Mc(J, V ) as those of F with respect
to the vector measure µ.

We are interested in control problems for this system. As in classical
stochastic control problems, it is natural to consider admissible controls to be
only those which are non anticipative with respect to the filtration Ft, t ≥ 0,
or simply Ft adapted. In general, there controls can be chosen from the
class of progressively measurable stochastic processes. Since our controls
are V -valued measures defined on BJ it is necessary to clarify what is meant
by non anticipating. We assume that the Banach space V is furnished with
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its topological Borel field BV so that (V,BV ) is a measurable space. The
following definition was introduced in [2].

Definition 6.1. A random vector valued measure u defined by the mapping

u : BJ × Ω −→ V

is said to be Ft-progressively measurable if, for every t ∈ J and every set
σ ∈ B[0,t), the V -valued random variable ω −→ u(σ, ω) = u(σ)(ω) is Ft

measurable. That is,

{ω ∈ Ω : u(σ)(ω) ∈ Γ} ∈ Ft

for every Γ ∈ BV .

We denote this class of vector measures by M0. For 1 ≤ p ≤ ∞, let
Lp(Ω,Mc(J, V )) denote the Banach space of random vector measures with
the norm topology given by

‖ u ‖p≡ (E|u|pv)1/p

where |u|v denotes the total variation norm. The variation norm is given by

|u|v ≡ |u|(J) ≡ sup
π

{∑
σ∈π

‖ u(σ) ‖V

}
< ∞,

where the supremum is taken over all partitions π of the interval J into a
finite number of disjoint members of BJ . With respect to this norm topology,
Lp(Ω,Mc(J, V )) is a Banach space.

Let V be a reflexive Banach space. For 1 ≤ p, q < ∞ satisfying (1/p) +
(1/q) = 1, using the theory of ”lifting” [17, Theorem 7, p. 94], one can
verify that the dual of Lq(Ω, C(J, V ∗)) is precisely Lw

p (Ω,Mc(J, V )), where
the superscript w is used to denote the class of weakly measurable functions
on Ω with values in Mc(J, V ). The theory of lifting is required here since
the spaces C(J, V ∗) andMc(J, V ) do not have the Radon-Nikodym property
(RNP). In particular, we are interested in the space Lw∞(Ω,Mc(J, V )) which
is the dual of L1(Ω, C(J, V ∗)). It is interesting to note that any continuous
linear functional ` on L1(Ω, C(J, V ∗)) has the representation

`(g) = E

∫

J
< g(t, ω), u(ω)(dt) >V ∗,V ,
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for some u ∈ Lw∞(Ω,Mc(J, V )) uniquely determined by ` and conversely
every u ∈ Lw∞(Ω,Mc(J, V )) induces a continuous (equivalently bounded)
linear functional given by

`u(g) = E

∫

J
< g(t, ω), u(ω)(dt) >V ∗,V .

In other words, (L1(Ω, C(J, V ∗)))∗ is isometrically isomorphic to
Lw∞(Ω,Mc(J, V )).

Some Simple Examples of Admissible Controls

Here we present some choices of admissible controls.

(AC1): Let ν be a countably additive bounded positive measure on J . For
admissible controls, one may choose the family

Uad ≡ {u ∈M0 ∩ Lw
∞(Ω,Mc(J, V )) : |u|(σ) ≤ ν(σ) P − a.s., ∀ σ ∈ BJ} .

(AC2): Define the set

Γ ≡ {µk, 1 ≤ k ≤ d, µk ∈Mc(J, V )}

where d is any finite positive integer. Consider the family of measurable
random processes

M ≡ {α ∈ L∞(J × Ω, Rd) : αk(t, ω) ∈ [−1, +1],

αk(t, ω)−Ft − adapted, 1 ≤ k ≤ d}.

Then we define the set of admissible controls as

Uad ≡
{
u : for every σ ∈ BJ , u(ω)(σ) =

∫

σ

d∑

i=1

αi(t, ω)µi(dt), α ∈ M
}
.

Clearly, the measure defined by ν(σ) ≡ ∑d
i=1 |µi|(σ) is a countably additive

bounded positive measure and the elements of Uad are dominated by ν in
the sense that

V (u, σ) ≤ ν(σ) ∀ u ∈ Uad, σ ∈ BJ .
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(AC3): Consider the infinite set {µi, i ∈ N} where each µi ∈Mc(J, V ) and
that

sup
i∈N

‖ µi ‖< ∞.

Consider the infinite family of Ft adapted essentially bounded random pro-
cesses

M ≡
{
mi, i ∈ N : mi(t, ω) ∈ {0, 1}, ∀(t, ω) ∈ J × Ω,

mi(t) is Ft measurable,
∑∞

i=1 mi = 1
}
.

Choose for the admissible controls the set given by

Uad ≡
{
u : u(ω)(σ) ≡

∫

σ

∞∑

i=1

mi(t, ω)µi(dt), σ ∈ BJ{mi} ∈ M
}
.

(AC4): Let Γ ⊂Mc(J, V ) be a weakly compact set satisfying the celebrated
Bartle-Dunford-Schwartz theorem [16, Theorem IV.5, p. 105]. Let m(t, ω)
be an essentially bounded measurable function, that is m ∈ L∞(J ×Ω), and
that m(t) is Ft adapted. Define the set of admissible controls as

Uad ≡
{
u : ∀σ ∈ BJ , ω ∈ Ω, u(ω)(σ) =

∫

σ
m(t, ω)µ(dt), µ ∈ Γ

}
.

(AC5): The class (AC4) can be generalized to the following class. Define

Mb ≡
{
m ∈ L∞(J × Ω) : m(t) is Ft adapted and |m(t, ω)| ≤ b

}
,

and the set of admissible controls as

Uad ≡
{
u : ∀σ ∈ BJ , ω ∈ Ω, u(ω)(σ) =

∫

σ
m(t, ω)µ(dt), m ∈ M,µ ∈ Γ

}
.

The class of controls defined above are constructed from deterministic count-
ably additive bounded vector measures Mc(J, V ) multiplied by Ft adapted
random processes. In contrast, we can also construct admissible controls
from L1(J, V ). Let γ be a countably additive bounded positive measure on J
not necessarily absolutely continuous with respect to the Lebesgue measure.
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To emphasize the measure we let L1(γ, V ) denote the Lebesgue-Bochner
space of γ-measurable V -valued functions on J which are integrable with
respect to the measure γ.

(AC6): Take any weakly compact set D ⊂ L1(γ, V ). For characterization of
weakly compact subsets of L1(γ, V ) see the Dunford theorem [16, Theorem
IV.1, p. 101]. Let M denote the class of Ft adapted essentially bounded real
random processes satisfying |m(t, ω)| ≤ 1. For admissible controls one may
then choose the set

Uad ≡
{
u : for ω ∈ Ω, σ ∈ BJ , u(ω)(σ) ≡

∫

σ
m(t, ω)f(t)γ(dt),m ∈ M, f ∈ D

}
.

(AC7): Take any weakly compact set Γ ⊂ Mc(J, V ). Since V is reflex-
ive, both V and V ∗ satisfy Radon Nikodym property and therefore by the
Bartle-Dunford-Schwartz theorem [16, Theorem IV.5, p. 105], there exists
a countably additive bounded positive measure π such that

lim
π(σ)→0

µ(σ) = 0 uniformly with respect to µ ∈ Γ.

Consider the Lebesgue-Bochner space L1(π, V ) and define the linear
operator

(Lπf)(σ) ≡
∫

σ
f(t)π(dt), f ∈ L1(π, V ).

Clearly, Lπ is a bounded linear map from L1(π, V ) to Mc(J, V ) and that
Range(Lπ) ⊃ Γ. Thus L−1

π (Γ) is a weakly compact subset of L1(π, V ). For
M as in (AC6), define the admissible controls as

Uad ≡
{
u : for ω ∈ Ω, σ ∈ BJ ,

u(ω)(σ) =
∫

σ
m(t, ω)f(t)π(dt),m ∈ M, f ∈ L−1

π (Γ)
}
.

The following result is proved exactly in the same way as Theorem 5.2.
See [2].

Theorem 6.2. Consider the system (19) with the admissible controls Uad

being weakly compact as described above and suppose all the assumptions of
Theorem 5.4 hold and that there exists a constant c > 0 such that
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‖ G(t, x) ‖L(V,H)≤ c (1 + |x|H)

‖ G(t, x)−G(t, y) ‖L(V,H)≤ c |x− y|H .
(20)

Then, for every x(0) = ξ ∈ M2(H) and u ∈ Uad, the system has a nonempty
set of solutions X (u) and that it is a closed bounded subset of the Banach
space M∞,2(J,H).

Remark. We note that not all the admissible controls introduced above are
weakly compact subsets of Lw∞(Ω,Mc(J, V ))∩M0. Clearly, the class (AC4)
is weakly compact. For weak compactness of the sets (AC5) – (AC7), it
suffices to choose the family of real random processes M weakly compact in
the following sense.

Lemma 6.3. Let M denote the family of Ft-adapted real random processes
defined on J satisfying the following conditions:

(1): the elements of M are stochastically right or left continuous,
(2): limr→∞ supξ∈M supt∈J P{|ξ(t)| > r} = 0,

(3): limh↓0 supξ∈M sup|t−s|<h P{|ξ(t)− ξ(s)| > ε} = 0 ∀ε > 0.

Then, corresponding to any sequence {ξn} from M, there exist a subsequence
{ξnk

}, defined in general on another probability space, and a stochastically
continuous process ξo ∈ M such that

ξnk
(t) −→ ξo(t) ∀ t ∈ J in probability.(21)

Further, if M is essentially bounded, or more generally, if there exists an
integrable Ft-adapted stochastically continuous process ζ so that

|ξnk
(t, ω)| ≤ ζ(t, ω), (t, ω) ∈ J × Ω,

then the sequence also converges in the mean.

The result of Lemma 6.3 is essentially due to Skorohod [15, p. 9]. In view
of this result, if the family M chosen for the classes (AC5) – (AC7) is
sequentially compact in the sense of Lemma 6.3, we can conclude that the
admissible controls given by (AC5) – (AC7) are sequentially compact. This
is presented in the following lemma.
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Lemma 6.4. Consider any of the families (AC5) – (AC7) denoted by Uad.
Suppose Γ ⊂ Mc(J, V ) is weakly compact and M is an essentially bounded
subset of L∞(Ω× J) satisfying the assumptions of Lemma 6.3. Further sup-
pose that (21) holds uniformly on J . Then Uad is weakly compact.

Proof. Let {un} be any sequence from Uad. Then by definition there exist
a sequence ξn ∈ M and a sequence µn ∈ Γ such that

un(ω)(σ) =
∫

σ
ξn(t, ω)µn(dt) for every σ ∈ BJ , ω ∈ Ω.

Suppressing ω we write this as

un(σ) ≡
∫

σ
ξn(t)µn(dt).

Clearly, this is a V -valued random variable. Take any g ∈ L1(Ω, C(J, V ∗))
which is Ft-adapted. Then

`n(g) ≡ E

∫

J
< g(t), un(dt) >V ∗,V

= E

∫

J
< g(t)ξn(t), µn(dt) >

=
∫

J
< E(g(t)ξn(t)), µn(dt) >V ∗,V

with the last identity following from Fubini’s theorem. By virtue of Lemma
6.3, there exist a subsequence of the sequence {ξn}, relabeled as the original
sequence, and an element ξo ∈ M such that

E(gξn)(t) −→ E(gξo)(t)

for each t ∈ J. In fact, it follows from the additional assumption that this
convergence holds uniformly in t on J. Similarly, Γ being weakly compact,
there exist a subsequence, again relabeled as the original sequence, and an
element µo ∈ Γ such that

µn
w−→ µo in Mc(J, V ).

Using these facts one can easily verify that

`n(g) −→ `o(g)
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for every Ft-adapted g ∈ L1(Ω, C(J, V ∗)) where

`o(g) ≡ E

∫

J
< g(t)ξo(t), µo(dt) > .

We denote the weak limit of un by uo given by

uo(σ) ≡
∫

σ
ξo(t)µo(dt).

This completes the proof.

For suitable f , ϕ and Ψ, the natural cost functional for a control problem
may be given by,

J0(u) ≡ sup
{

λ(x, u) = E

(∫

J
`(t, x(t))dt+ϕ(x(T ))+Ψ(u)

)
, x ∈ X (u)

}
,

(22)
which is an appropriate measure of the maximum risk or cost. The problem
here is to find a control uo ∈ Uad that minimizes the maximum risk, that is,

J0(uo) ≤ J0(u) ∀ u ∈ Uad.

In general, the function ` is measurable in t on J and continuous in x on H
satisfying

h0(t) ≤ `(t, x) ≤ h(t)
[
1 + |x|2H

]
,(23)

for some h0 ∈ L1(J) and h ∈ L+
1 (J), and ϕ is required to satisfy

α0 ≤ ϕ(x) ≤ α1 + α2|x|2H , α0, α1 ∈ R, α2 ≥ 0.(24)

The function Ψ is a nonnegative real valued weakly lower semi continuous
functional defined on Mc(J, V ) signifying a measure of cost of control. For
example

Ψ(µ) ≤ β1 + β2|µ|γ , γ ≥ 1,(25)
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where β1, β2 ≥ 0 and |µ| denotes the total variation norm of the measure
µ ∈ Mc(J, V ) as defined earlier. In view of the choice of the admissible
controls Uad and the assumption (24− 25), the control problem (19), (22) is
well defined.

The questions of existence of optimal controls and also necessary con-
ditions of optimality are of fundamental importance in control theory. For
deterministic problems involving impulsive systems some results have been
proved recently in [7]. Here we want to prove the existence of optimal con-
trols for the stochastic problem. At this time we can only prove an existence
result for systems of the form (19) with control appearing linearly,

dx ∈ Axdβ + F (t, x)dµ + G(t)du + C(t, x)dW, x(0) = ξ,(26)

where the control operator G is a suitable linear operator valued function
with values in L(V, H). We consider the system (26) with the cost functional
given by (22).

The following is the main result of the paper.

Theorem 6.5. Consider the optimal control problem (22) and (26) with the
admissible controls Uad being weakly compact. Suppose {A, β, F, µ, C} sat-
isfy the assumptions of Theorem 6.2 and the functions ` ϕ are continuous
in x on H and satisfy the growth conditions (23)− (24) and Ψ is a nonnega-
tive lower semi continuous functional on Mc(J, V ) bounded on bounded sets
satisfying (25). Further suppose the semi group T (t), t > 0, corresponding to
the generator A, is compact and that the control operator G : J −→ L(V,H)
is bounded uniformly measurable and compact for each t ∈ J. Then there
exists an optimal control for the problem (22) and (26).

Proof. Since Uad is a weakly compact subset of Lw∞(Ω,Mc(J, V )) ∩M0

it is clearly bounded and thus it follows from the assumption on Ψ that
E{Ψ(|u|v)} < ∞. Using this fact and the assumptions (23−25) and the fact
that X (u) is a bounded subset of M∞,2(J,H) (Theorem 6.2), we conclude
that

J0(u) ≡ sup{λ(x, u), x ∈ X (u)} ≡ Mu < ∞.

Since no concavity assumption is imposed on the functions ` and ϕ, and
X (u) is not necessarily compact, the supremum may not be attained in X (u).
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However, for any ε > 0, we can find an element xu ∈ X (u) such that

Mu ≥ λ(xu, u) ≥ Mu − ε ∀ u ∈ Uad.(27)

It is also clear form (23− 25) and the fact that Ψ is nonnegative, that

−∞ < m ≡ inf{Jo(u), u ∈ Uad}.(28)

Let {un} ∈ Uad be a minimizing sequence, that is,

lim
n→∞Jo(un) = m.

By virtue of (27) we can find an xn ∈ X (un) so that

Jo(un) ≡ Mun ≥ λ(xn, un) ≥ Mun − ε ≡ Jo(un)− ε.(29)

Since xn ∈ X (un) there exists an Ln ∈ M2,2(J, Y ) such that xn is the
solution of the stochastic differential equation,

dxn = Axndβ + F (t, xn)dµ + G(t)dun + Ln(t)dW, x(0) = ξ,(30)

and that the pair {xn, Ln} is related by the inclusion relation,

Ln(t) ∈ C(t, xn(t)) a.e., P − a.s.(31)

In other words, xn satisfies the integral equation

xn(t) = Uβ(t, 0)ξ +
∫ t

0
Uβ(t, s)F (s, xn(s))dµ(s) +

∫ t

0
Uβ(t, s)G(s)dun(s)

+
∫ t

0
Uβ(t, s)Ln(s)dW (s), t ∈ J(32)

for some Ln ∈ Fix(Ĉun) where, for any L ∈ M2,2(J, Y ),

Ĉu(L) = {Γ ∈ M2,2(J, Y ) : Γ(t) ∈ C(t,Su(L)(t)) a.e. and P − a.s.}(33)
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with Su(L) denoting the mild solution of the stochastic differential
equation (SDE),

dx = Axdβ + F (t, x)dµ + G(t)du + LdW, x(0) = ξ,(34)

corresponding to the control u ∈ Uad and L ∈ M2,2(J, Y ). Since the set of
admissible controls Uad is bounded and, by Theorem 5.4, each solution set
X (u) is a bounded subset of M∞,2(J,H), the set

X (Uad) ≡ ∪{X (u), u ∈ Uad}

is also a bounded subset of M∞,2(J,H). This can be easily proved by using
the growth assumption for the multifunction C, as stated in Theorem 5.4,
and the boundedness of the set Uad. Hence there exists a finite positive
number b > 0 such that

sup
{
E|x(t)|2H , t ∈ J, x ∈ X (Uad)

}
≤ b,

where the constant b depends on the set of parameters {K, ζ, |µ|v, |ν|v, E|ξ|2H}.
Thus it follows from the growth assumption of the multifunction C, as men-
tioned above, that the sequence {Ln} is contained in a bounded subset of
M2,2(J, Y ). Since Uad is weakly compact and M2,2(J, Y ) is a Hilbert space
(hence a bounded set is relatively weakly compact) there exist a subse-
quence of the sequence {un, Ln}, relabeled as the original sequence, and a
pair {uo, Lo} such that

un
w−→ uo in Uad(35)

Ln
w−→ Lo in M2,2(J, Y ).(36)

Let xo ∈ M∞,2(J,H) denote the solution of the of the integral equation,

x(t) = Uβ(t, 0)ξ +
∫ t

0
Uβ(t, s)F (s, x(s))dµ(s) +

∫ t

0
Uβ(t, s)G(s)duo(s)

+
∫ t

0
Uβ(t, s)Lo(s)dW (s), t ∈ J,(37)

corresponding to the pair {uo, Lo}. We proceed with the proof assuming
for the moment that xn(t) −→ xo(t) in H pointwise in t, P − a.s. and then
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complete the proof by demonstrating the correctness of this hypothesis. We
prove that uo is the optimal control. Since {un} is a minimizing sequence it
follows from (28) and (29) that

m = limn→∞ Jo(un) = lim infn→∞ Jo(un)

≥ lim infn→∞ λ(xn, un) ≥ lim infn→∞ Jo(un)− ε.
(38)

Since ` and ϕ are continuous in x on H and they satisfy the growth conditions
(23 − 24), using Fatou’s Lemma one can verify that the functional x −→
λ(x, u) is lower semi continuous and bounded on M∞,2(J,H) for each fixed
u ∈ Uad. Recalling that Ψ is a lower semi continuous real valued functional
on Mc(J, V ), using Fatou’s Lemma once again we have

E
{
lim inf
n→∞ Ψ(un)

}
≤ lim inf

n→∞ E {Ψ(un)} .

Clearly, this means that the functional u −→ λ(x, u) is weakly lower semi
continuous on Uad for each x ∈ M∞,2(J,H). Thus

lim inf
n→∞ λ(xn, un) ≥ λ(xo, u

o).(39)

In view of (29) it follows from (38) and (39) that

m ≥ λ(xo, u
o) ≥ m− ε.(40)

Since xo ∈ X (uo), it follows from this inequality that

Jo(uo) ≥ m ≥ λ(xo, uo) ≥ m− ε

and that
Jo(u) ≥ m,∀u ∈ Uad.

Clearly, if Jo(uo) = m, the control uo is optimal. So it suffices to prove
that Jo(uo) = m. We prove this by actually showing that we can construct
another sequence of minimizing controls whose weak limit is an admissible
control at which Jo equals m. If uo is not optimal, there exists a control
u1 ∈ Uad such that

Jo(uo) > Jo(u1) ≥ m.
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But then we can find another minimizing sequence, say, {u1
n} ⊂ Uad con-

verging weakly to u1 and a corresponding sequence pair {L1
n, x1

n} such that

L1
n(t) ∈ C(t, x1

n(t)), a.e., P − a.s.,

L1
n

w−→ L1 in M2,2(J,H)

x1
n(t) −→ x1(t), a.e., P − a.s. in H,

and
Jo(u1

n) −→ m.

Clearly, again if u1 is not optimal (that is, Jo(u1) > m), there exist a better
control u2 and, by the same argument, an infinite sequence of such better
controls such that

Jo(uo) > Jo(u1) > Jo(u2) > Jo(u3) > · · · > Jo(uk) · · · ≥ m, ∀, k ∈ N.

Since {Jo(uk)} is a monotone decreasing sequence, bounded from below by
m, it must converge to m. Letting u∞ ∈ Uad denote the weak limit of the
above sequence of controls and noting that u −→ X (u) is continuous from
Uad to cb(M∞,2(J,H)) with respect to the relative weak topology on Uad

and the Hausdorff metric topology on cb(M∞,2(J,H)), it follows from weak
lower semi continuity of u −→ λ(x, u) that

lim
k→∞

Jo(uk) = limk→∞Jo(uk) ≥ Jo(u∞).

Hence Jo(u∞) = m and u∞ is the optimal control. Thus, at the very outset
one may assume that the minimizing sequence {un} chosen has a limit uo

for which Jo(uo) = m. Thus we have justified that

Jo(u) ≥ Jo(uo) = m ∀u ∈ Uad

proving that uo is optimal. Now it remains to justify that xn(t) −→ xo(t)
in H for all t ∈ J, P − a.s. Subtracting (37) from (32), with the solution of
the former denoted by xo and that of the later denoted by xn, and using the
notations,

en(t) ≡ |xn(t)− xo(t)|H , ϕn(t) ≡ |zn(t)− zo(t)|H , t ∈ J(41)

α(t) ≡
∫ t

0
K(s)d|µ|(s), t ∈ J,(42)



180 N.U. Ahmed

zn(t) ≡
∫ t

0
Uβ(t, s)G(s)dun(s) +

∫ t

0
Uβ(t, s)Ln(s)dW (s),(43)

zo(t) ≡
∫ t

0
Uβ(t, s)G(s)duo(s) +

∫ t

0
Uβ(t, s)Lo(s)dW (s),(44)

we deduce the following inequality

en(t) ≤ ϕn(t) +
∫ t

0
en(s)dα(s).(45)

Since µ is a countably additive vector measure of bounded total variation,
and K ∈ L+

2 (J, |µ|) ⊂ L+
1 (J, |µ|), α is a positive nondecreasing function of

bounded variation.
Hence, by virtue of a generalized Gronwall type inequality, it follows

from this that

en(t) ≤ ϕn(t) + exp(α(t))
∫ t

0
ϕn(s)dα(s).(46)

Clearly, if ϕn(t) −→ 0 as n → ∞ for all t ∈ J, P−a.s, then en(t) −→ 0 for
all t ∈ J, P − a.s. Thus it suffices to prove that ϕn(t) −→ 0 for each t ∈ J,
P − a.s.

We prove this as follows. Define

Πn(t) ≡ ηn(t)− ηo(t) =
∫ t

0
Uβ(t, s)(Ln(s)− Lo(s))dW (s)(47)

Λn(t) ≡ ξn(t)− ξo(t) ≡
∫ t

0
Uβ(t, s)G(s)d(un(s)− uo(s)),(48)

and note that zn(t)−zo(t) = Πn(t)+Λn(t). To complete the proof it suffices
to show that for each t ∈ J , Πn(t) −→ 0 and Λn(t) −→ 0 in H strongly
P − a.s.

Considering Πn, it is clear that

E|Πn(t)|2H = E

∫ t

0
‖ Uβ(t, s)(Ln(s)− Lo(s)) ‖2

Y ds

= E

∫ t−δ

0
‖ Uβ(t, s)(Ln(s)− Lo(s)) ‖2

Y ds(49)

+ E

∫ t

t−δ
‖ Uβ(t, s)(Ln(s)− Lo(s)) ‖2

Y ds

for every δ > 0 so that t > δ.
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By our hypothesis the semigroup T (t), t > 0, is compact and the resolvents
are bounded operators. Therefore, it follows from the expression (7) that
the evolution operator Uβ(t, s), 0 ≤ s < t ≤ T, is also a family of compact
operators. Since Ln converges weakly to Lo in M2,2(J, Y ), it follows from
the compactness of the evolution operator that the first term of the above
expression converges to zero as n → ∞. For the second term, recall that
both {Ln} and Lo are dominated in the sense that

E ‖ Ln(t) ‖2
Y≤ 2ζ2(t)(1 + E|xn(t)|2H) ≤ 2(1 + b)ζ2(t), t ∈ J,

E ‖ Lo(t) ‖2
Y≤ 2ζ2(t)(1 + E|xo(t)|2H) ≤ 2(1 + b)ζ2(t), t ∈ J,

where b is the apriori bound already mentioned. Since the transition oper-
ator Uβ is non expansive , this implies that

E

∫ t

t−δ
‖ Uβ(t, s)(Ln(s)− Lo(s) ‖2

Y ds

≤
∫ t

t−δ
4(1 + b)ζ2(s)ds −→ 0, as δ → 0.

(50)

Thus, it follows from (49) that E|Πn(t)|2H −→ 0 for each t ∈ J, and hence,
along a subsequence if necessary,

Πn(t) s−→ 0 in H, P − a.s.(51)

Now consider Λn. Clearly

|Λn(t)|H = sup{(Λn(t), h), h ∈ B1(H)}(52)

= sup
{∫ t

0
< Φt,h(s), un(ds)− uo(ds) >, h ∈ B1(H)

}
(53)

where
Φt,h(s) ≡ G∗(s)U∗

β(t, s)h, 0 ≤ s ≤ t ≤ T.

We show that Λn(t) s−→ 0, P − a.s. To show this, it suffices to verify that

E{|Λn(t)|2H} −→ 0.
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Suppose the contrary. Then there exists a δ > 0 and a sequence hn ∈ B1(H)
such that

0 < δ ≤ E{(Λn(t), hn)} ∀ n ∈ N.

Since B1(H) is weakly compact there exist a subsequence of the sequence
{hn}, relabeled as the original sequence, and an element ho ∈ B1(H) such
that hn

w−→ ho. Then

0 < δ ≤ E{(Λn(t), hn)}
= E{(Λn(t), hn − ho)}+ E{(Λn(t), ho)} ∀ n ∈ N.

(54)

Since un
w−→ uo, Λn(t) w−→ 0. Hence we can choose nδ ∈ N such that

|E{(Λn(t), ho)}| ≤ (δ/4)(55)

for all n ≥ nδ. By our assumption G is a compact operator valued function
and consequently

‖ Φt,hn−ho(s) ‖V ∗=‖ G∗(s)U∗
β(t, s)(hn − ho) ‖V ∗−→ 0

for every s ∈ [0, t]. Using this result and the assumption that the set of
admissible controls is a weakly compact subset of Lw∞(Ω,Mc(J, V ))∩Mo, it
is easy to verify that E{(Λn(t), hn − ho)} −→ 0 for every fixed t ∈ J. Thus
there exists an mδ ∈ N such that for n ≥ mδ we have

|E{(Λn(t), hn − ho)}| ≤ (δ/4).(56)

Hence, for n ≥ max{nδ,mδ}, it follows from (55) and (56) that (54) is
contradicted thereby proving that xn(t) s−→ xo(t) point wise in t ∈ J ,
P − a.s. Since the multifunction C(t, x) is closed convex valued in Y , we
can show that Lo(t) ∈ C(t, xo(t)) a.e. P − a.s. Thus xo ∈ X (uo) and so is
a solution of the evolution inclusion corresponding to the control uo. This
completes the proof.

Remark. Under some additional assumptions it should be possible to ex-
tend the result of Theorem 6.5 to the case of nonlinear operator G as in
equation (19).



Optimal control of impulsive stochastic ... 183

Remark. It would be interesting to relax the compactness assumptions of
the semigroup operators {T (t), t > 0} and the control operator {G(t), t ∈ J}.
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