ArticleOriginal scientific text

Title

Set-valued stochastic integrals and stochastic inclusions in a plane

Authors 1

Affiliations

  1. Institute of Mathematics, University of Zielona Góra, Podgórna 50, 65-246 Zielona Góra, Poland

Abstract

We present the concepts of set-valued stochastic integrals in a plane and prove the existence of a solution to stochastic integral inclusions of the form zs,tφs,t+0s0tFu,v(zu,v)dudv+0s0tGu,v(zu,v)dwu,v

Keywords

stochastic inclusions in the plane, set-valued random field, two-parameter stochastic process, weak compactness

Bibliography

  1. R. Cairoli, Sur une équation differentielle stochastique, Compte Rendus Acad. Sc. Paris 274 (A) (1972), 1739-1742.
  2. R. Cairoli and J.B. Walsh, Stochastic integrals in the plane, Acta Mathematica 134 (1975), 112-183.
  3. F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivar. Anal. 7 (1977), 149-162.
  4. M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ. - PWN, Dordrecht, Boston - London, Warszawa 1991.
  5. M. Kisielewicz, Properties of solution set of stochastic inclusions, J. Appl. Math. Stoch. Anal. 6 (3) (1993), 217-236.
  6. L. Ponomarenco, Stochastic integral with respect to the multiparameter Brownian motion and attached stochastic equations (in Russian), Teor. Veroiatn. i Mat. Stat. Kiev 7 (1972) 100-109.
  7. W. Sosulski, Subtrajectory integrals of set-valued functions depending on parameters, Discuss. Math. 10 (1990), 99-121.
  8. T.J. Tsarenco, On some scheme of the construction of stochastic integral for the radom field (in Russian), Kibernetika 1 (1972), 113-118.
  9. C. Tudor, Stochastic integral equations in the plane, Preprint Series in Mathematics, INCREST 29 (1979) 507-538.
Pages:
249-259
Main language of publication
English
Received
2001-10-10
Accepted
2001-11-18
Published
2001
Exact and natural sciences