ArticleOriginal scientific text
Title
Set-valued stochastic integrals and stochastic inclusions in a plane
Authors 1
Affiliations
- Institute of Mathematics, University of Zielona Góra, Podgórna 50, 65-246 Zielona Góra, Poland
Abstract
We present the concepts of set-valued stochastic integrals in a plane and prove the existence of a solution to stochastic integral inclusions of the form
Keywords
stochastic inclusions in the plane, set-valued random field, two-parameter stochastic process, weak compactness
Bibliography
- R. Cairoli, Sur une équation differentielle stochastique, Compte Rendus Acad. Sc. Paris 274 (A) (1972), 1739-1742.
- R. Cairoli and J.B. Walsh, Stochastic integrals in the plane, Acta Mathematica 134 (1975), 112-183.
- F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivar. Anal. 7 (1977), 149-162.
- M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ. - PWN, Dordrecht, Boston - London, Warszawa 1991.
- M. Kisielewicz, Properties of solution set of stochastic inclusions, J. Appl. Math. Stoch. Anal. 6 (3) (1993), 217-236.
- L. Ponomarenco, Stochastic integral with respect to the multiparameter Brownian motion and attached stochastic equations (in Russian), Teor. Veroiatn. i Mat. Stat. Kiev 7 (1972) 100-109.
- W. Sosulski, Subtrajectory integrals of set-valued functions depending on parameters, Discuss. Math. 10 (1990), 99-121.
- T.J. Tsarenco, On some scheme of the construction of stochastic integral for the radom field (in Russian), Kibernetika 1 (1972), 113-118.
- C. Tudor, Stochastic integral equations in the plane, Preprint Series in Mathematics, INCREST 29 (1979) 507-538.