ArticleOriginal scientific text

Title

Extremal solutions for nonlinear neumann problems

Authors 1, 1, 2

Affiliations

  1. University of Perugia, Department of Mathematics and Computer Science, via Vanvitelli 1, Perugia 06123 Italy
  2. University of Roma 2, Department of Mathematics, via della Ricerca Scientifica, Roma 00133 Italy

Abstract

In this paper, we study a nonlinear Neumann problem. Assuming the existence of an upper and a lower solution, we prove the existence of a least and a greatest solution between them. Our approach uses the theory of operators of monotone type together with truncation and penalization techniques.

Keywords

upper solution, lower solution, order interval, truncation function, penalty function, pseudomonotone operator, coercive operator, extremal solution

Bibliography

  1. R. Adams, Sobolev Spaces, Academic Press, New York 1975.
  2. R.B. Ash, Real Analysis and Probability, Academic Press, New York, San Francisco, London 1972.
  3. H. Brézis, Analyse Functionelle: Théorie et Applications, Masson, Paris 1983.
  4. F.E. Browder and P. Hess, Nonlinear Mappings of Monotone Type in Banach Spaces, J. Funct. Anal. 11 (1972), 251-294.
  5. T. Cardinali, N.S. Papageorgiou and R. Servadei, The Neumann Problem for Quasilinear Differential Equations, preprint.
  6. E. Casas and L.A. Fernández, A Green's Formula for Quasilinear Elliptic Operators, J. Math. Anal. Appl. 142 (1989), 62-73.
  7. E. Dancer and G. Sweers, On the Existence of a Maximal Weak Solution for a Semilinear Elliptic Equation, Diff. Integral Eqns 2 (1989), 533-540.
  8. J. Deuel and P. Hess, A Criterion for the Existence of Solutions of Nonlinear Elliptic Boundary Value Problems, Proc. Royal Soc. Edinburgh (A) 74 (1974-75), 49-54.
  9. N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory, Interscience Publishers, New York 1958-1971.
  10. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin 1983.
  11. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York 1975.
  12. S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwert, Dordrecht, The Netherlands 1997.
  13. N. Kenmochi, Pseudomonotone Operators and Nonlinear Elliptic Boundary Value Problems, J. Math. Soc. Japan 27 (1975), 121-149.
  14. J. Leray and J.L. Lions, Quelques Resultats de Visik sur les Problems Elliptiques Nonlinearities par Methodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107.
  15. J.J. Nieto and A. Cabada, A Generalized Upper and Lower Solutions Method for Nonlinear Second Order Ordinary Differential Equations, J. Appl. Math. Stochastic Anal. 5 (2) (1992), 157-165.
  16. E. Zeidler, Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York 1990.
Pages:
191-206
Main language of publication
English
Received
2001-07-07
Published
2001
Exact and natural sciences