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1. Introduction

The present paper is devoted to the study of the existence of solutions to
initial value problems for first order differential inclusions subject to
impulsive effects.

The theory of impulsive differential equations appears naturally in the
description of physical and biological phenomena that are subjected to in-
stantaneous changes at some time instants called moments. This theory has
received much attention in recent years, see for instance, Lakshmikantham,
Bainov and Simeonov [14], Smoilenko and Perestyuk [20], Pierson Gorez [19],
E. Liz [17] and D. Franco [8], Frigon and O’Regan [9], [11], Liz and Nieto
[16], and Yujun and Erxin [21]. However, very few results are available for
impulsive differential inclusions (see for example Benchohra and Boucherif
[4], [5], Erbe and Krawcewicz [7], Frigon and O’Regan [10]).

The fundamental tools used in the existence proofs of all above men-
tioned works are essentially the fixed point arguments, nonlinear alternative
of the Leray-Schauder type, degree theory, topological transversality theo-
rem or the monotone iterative technique combined with upper and lower
solutions.

Let J := [0, T ], 0 < T < ∞ and consider a set J ′ := {t1, t2, . . . , tm} ⊂ J
with 0 = t0 < t1 < . . . < tm < tm+1 = T.

Our objective is to establish existence results for the following problem

(1.1) y′ ∈ F (t, y), t ∈ J\J ′

(1.2) y(t+k ) = Ik(y(t−k )), k = 1, . . . , m,

(1.3) y(0) = y0,

where y0 ∈ R, Ik ∈ C(R,R) for each k = 1, 2, . . . , m, y(t−k ) and y(t+k )
represent the left and right limits of y(t) at t = tk, respectively and F :
J × R −→ 2R is a set valued map given by

(1.4) F (t, y) := [φ(t, y), ψ(t, y)] for all (t, y) ∈ J × R,

where the functions φ, ψ : J × R −→ R satisfy conditions that will be
specified later. We should point out that such set valued map was also
proposed in [6]. If F (t, y) is a nonempty compact convex subset of R, then
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F (t, y) is a compact interval and hence of the form indicated in (1.4). Of
course, this includes the case when F is single-valued and φ(t, y) = ψ(t, y) =
F (t, y).

In this paper, we give two existence results to (1.1) – (1.3). In our
results, we do not assume any type of monotonicity condition on Ik, k =
1, . . . , m, which is usually the situation in the literature.

We use a fixed point approach to establish our existence results. In
particular, we use a fixed point theorem for condensing maps as used by
Martelli ([18]).

2. Preliminaries

In this section, we introduce the basic definitions and notations which will
be used in the remainder.

Consider a function f : J × R→ R, and z ∈ R.
f(t, .) is lower semi-continuous (lsc for short) at z if f(t, z) ≤ lim

x→z
inf f(t, x).

f(t, .) is upper semi-continuous (usc for short) at z if f(t, z) ≥ lim
x→z

sup f(t, x).

Note that f(t, .) is usc if and only if −f(t, .) is lsc. f is said to be of type
M if for every measurable function y : J → R, the function t 7−→ f(t, y(t)) is
measurable. A typical example of such a function is a Carathéodory function
(see [12]). C(J,R) is the Banach space of continuous functions y : J −→ R
with the norm

‖y‖∞ = sup{|y(t)| : t ∈ J} for all y ∈ C(J,R).

AC(J,R) is the space of all absolutely continuous functions y : J −→ R.
For such functions the derivative y′ exists almost everywhere.

L2(J,R) denotes the Banach space of Lebesgue measurable functions
y : J −→ R for which

∫ T
0 |y(t)|2dt < +∞, with the norm

‖y‖L2 =
(∫ T

0
|y(t)|2dt

)1/2
for all y ∈ L2(J,R).

H1(J,R) denotes the Banach space of functions y : J −→ R which are
absolutely continuous and whose derivative y′ is an element of L2(J,R) with
the norm

‖y‖H1 = ‖y‖L2 + ‖y′‖L2 for all y ∈ H1(J,R).
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In order to define the solution to (1.1) – (1.3) we shall consider the following
spaces. Ω = {y : [0, T ] −→ R : y is continuous on J\J ′, y(t+k ) and y(t−k )
exist and y(tk) = y(t−k ), k = 1, . . . ,m }. Evidently, Ω is a Banach space
with the norm

‖y‖Ω = sup
t∈J

|y(t)|.

Let Ω1 := Ω ∩H1(J,R). For each y ∈ Ω1 we let ‖y‖ = ‖y‖H1 . Hence Ω1 is
a Banach space.

Definition 1. By a solution to (1.1) – (1.3), we mean a function y ∈ Ω1
0 :=

{y ∈ Ω1 : y(0) = y0} that satisfies the differential inclusion

y′(t) ∈ F (t, y(t)) almost everywhere on J\J ′,

and for each k = 1, . . . ,m the function y satisfies the equations y(t+k ) =
Ik(y(t−k )).

Let (X, ‖.‖) be a Banach space. A set valued map G : X −→ 2X has convex
(closed) values if G(x) is convex (closed) for all x ∈ X. G is bounded on
bounded sets if G(B) is bounded in X for any bounded subset B of X
(i.e. sup

x∈B
{sup{‖y‖ : y ∈ G(x)}} < ∞).

G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X the
set G(x0) is a nonempty, closed subset of X, and if for each open set N of
X containing G(x0), there exists an open neighbourhood M of x0 such that
G(M) ⊆ N.

G is said to be completely continuous if G(B) = ∪x∈BG(x) is relatively
compact for every bounded subset B ⊆ X. G has a fixed point if there is
x ∈ X such that x ∈ Gx.

In the following, cc(X) denotes the set of all nonempty compact convex
subsets of X.

An upper semi-continuous map G : X −→ 2X is said to be condensing if
for any bounded subset N ⊆ X with α(N) > 0, we have α(G(N)) < α(N),
where α denotes the Kuratowski measure of noncompactness (see [2], [3],
[18]).

We remark that a compact map is the simplest example of a condensing
map. For more details on set valued maps see for instance Aubin-Frankowska
[1], Deimling [6], Hu and Papageorgiou [13].

The following result, which is a generalization of the classical Schaeffer’s
theorem to set-valued mappings, is crucial in the proof of our main results.
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Lemma 1 [18]. Let X be a Banach space and G : X −→ cc(X) a condens-
ing map. If the set

M := {y ∈ X : λy ∈ G(y) for some λ > 1}

is bounded, then G has a fixed point.

Let F (t, y) := [φ(t, y), ψ(t, y)]. If φ and ψ are of type M, then the set-valued
map F is called of type M.

Lemma 2 (Proposition VI.1. p. 40 [12]). Assume that F is of type M and
for each k ≥ 0, there exists φk ∈ L2(J,R) such that

‖F (t, y)‖ = sup{|v| : v ∈ F (t, y)} ≤ φk(t) for |y| ≤ k.

Then the operator F : C(J,R) −→ 2L2(J,R) defined by

Fy := {h : J −→ R measurable: h(t) ∈ F (t, y(t)) a.e. t ∈ J}

is well defined, u.s.c., bounded on bounded sets in C(J,R) and has convex
values.

3. Main result

In this section, we state and prove our main result. For that purpose we
shall assume that the functions φ and ψ that define the set valued map F ,
satisfy

(H1) φ and ψ are functions of type M;

(H2) φ(t, .) is lsc and ψ(t, .) is usc, with φ(t, y) ≤ ψ(t, y) for all (t, y) ∈ J×R;

(H3) there exists θ : [0,∞) → (0,∞) continuous such that 1/θ ∈ L2
loc([0,∞))

and
max{|φ(t, y)|, |ψ(t, y)|} ≤ θ(|y|) for all t ∈ J.

The first result induced by these asumptions is the following.

Proposition 1. Suppose that the conditions (H1) and (H2) are satisfied.
Then the set-valued map F is of type M and F (t, .) is usc with compact
convex values.
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Proof. The fact that F is of type M follows from the definition of
functions of type M and (H1) (see [12] p. 8). Also, note that for each
y ∈ R F (t, y) = [φ(t, y), ψ(t, y)] is a closed interval in R. It follows from
(H2) that F (t, .) has compact and convex values (see [6], p. 5).

Let G : C(J,R) → L2(J,R) be the set-valued map defined by

(Gy)(t) := F (t, y(t)) for all t ∈ J

that is

Gy := {u : J → R measurable : u(t) ∈ F (t, y(t)) for almost all t ∈ J}.

Proposition 2. If the asumptions (H1) – (H3) are satisfied, then the set-
valued operator G is well defined, usc, with convex values, and bounded on
bounded subsets of C(J,R).

Proof. See proof of Proposition II.7. p. 16 in [12].

Our first result reads as follows.

Theorem 1. Let t0 = 0, tm+1 = T . Suppose that, in addition to (H1), (H2)
and (H3), the following condition is satisfied

(C1) There exist {rj}m
j=0 and {sj}m

j=0 such that

(i) s0 ≤ y0 ≤ r0

(ii) sj+1 ≤ min
[sj ,rj ]

Ij+1(y) ≤ max
[sj ,rj ]

Ij+1(y) ≤ rj+1, j = 0, 1, . . . ,m− 1;

(iii) φ(t, sk) ≥ 0 and ψ(t, rk) ≤ 0 for all t ∈ [tk, tk+1], k = 0, . . . , m.

Then the impulsive initial value problem (1.1) – (1.3) has at least one solu-
tion.

Proof. This proof will be given in several steps.

Step 1. We restrict our attention to the problem on [0, t1], that is the initial
value problem

(3.1)

{
y′(t) ∈ F (t, y(t)), t ∈ [(0, t1)]

y(0) = y0.



On initial value problems for a class of ... 165

Define a modified set valued map F1 relative to the pair (s0, r0) by

F1(t, y) :=





[φ(t, s0), ψ(t, s0)] if y < s0

[φ(t, y), ψ(t, y)] if s0 ≤ y ≤ r0

[φ(t, r0), ψ(t, r0)] if y > r0

and for all t ∈ [0, t1].

Consider the modified initial value problem

(3.2)

{
y′(t) ∈ F1(t, y(t)), t ∈ [(0, t1)]

y(0) = y0.

Transform this problem into a fixed point problem. For this, consider the
operators

L : H1([0, t1],R) −→ L2([0, t1],R) defined by Ly = y′,

j : H1([0, t1],R) −→ C([0, t1],R) defined by jy = y,

the completely continuous imbedding, and G1 : C([0, t1],R) −→ 2L2([0,t1],R)

defined by

G1y :=
{

u : [0, t1] −→ R measurable : u(t) ∈ F1(t, y(t)) for a.e. t ∈ [0, t1]
}

.

We can easily show that L is one-to-one and onto with a bounded inverse
L−1. It follows from Lemma 2 that G1 is well defined, usc, bounded on
bounded subsets of C([0, t1],R) and has convex values. It is clear that the
solutions to problem (3.2) are solutions of the fixed point inclusion y ∈ H1(y)
and vice-versa, where the set valued map H1 is given by H1 = L−1G1j.
Note that H1 is compact (because G1 is bounded on bounded subsets of
C([0, t1),R) and j is completely continuous), usc and has convex values.
Consequently H1 is a condensing map.

Step 2. Consider the set

U1 := {y ∈ C([0, t1],R) : λy ∈ H1(y) for some λ > 1}.
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Let y ∈ U1. Then λy ∈ H1(y), for some λ > 1. Hence, y satisfies the initial
value problem

(3.3)

{
λy′(t) ∈ (G1y)(t), t ∈ [(0, t1)]

y(0) = y0.

This problem is equivalent to

λy(t) ∈
{

y0 +
∫ t

0
h(s)ds; h(s) ∈ F1(s, y(s)), 0 ≤ s ≤ t ≤ t1

}
.

This shows that for some λ > 1 and h ∈ G1y

y(t) = λ−1y0 + λ−1

∫ t

0
h(s)ds, 0 ≤ t ≤ t1.

Thus,

|y(t)| ≤ |y0|+ ‖h‖L2 for all t ∈ [0, t1].

Now, since h(t) ∈ F1(t, y(t)), if follows from the definition of F1(t, y) and
the assumption (H3) that there exists a positive constant h0 such that
‖h‖L2 ≤ h0. In fact

h0 = max{|r0|, |s0|, sup
s0≤y≤r0

|θ(y)|}.

Therefore, we have

|y(t)| ≤ h0 + |y0| for all t ∈ [0, t1].

This yields

‖y‖∞ ≤ h0 + |y0|,

which shows that the set U1 is bounded. It follows from the Lemma 1
that the set-valued map H1 has a fixed point, which is a solution to our
problem (3.2).
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Step 3. We shall show that the solution y to (3.2) satisfies

s0 ≤ y(t) ≤ r0 for all t ∈ [0, t1].

First, we prove that

s0 ≤ y(t) for all t ∈ [0, t1].

Suppose on the contrary that there exist σ1, σ2 ∈ [0, t1], σ1 < σ2 such that
y(σ1) = s0 and

s0 > y(t) for all t ∈ (σ1, σ2).

This implies that

F1(t, y(t)) = [φ(t, s0), ψ(t, s0)] for all t ∈ (σ1, σ2).

Hence, we have
y′(t) ∈ [φ(t, s0), ψ(t, s0)],

which implies that

y′(t) ≥ φ(t, s0) for all t ∈ (σ1, σ2).

It follows that for all t ∈ (σ1, σ2)

y(t) ≥ y(σ1) +
∫ t

σ1

φ(s, s0)ds.

Since φ(t, s0) ≥ 0 for t ∈ [0, t1] we get

0 > y(t)− s0 ≥
∫ t

σ1

φ(s, s0)ds ≥ 0 for all t ∈ (σ1, σ2)

which is a contradiction. Thus s0 ≤ y(t) for t ∈ [0, t1]. Similarly, we can
show that y(t) ≤ r0 for t ∈ [0, t1]. Hence

s0 ≤ y(t) ≤ r0 for all t ∈ [0, t1].
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But for all y ∈ [s0, r0] we have

F1(t, y) = [φ(t, y), ψ(t, y)] = F (t, y) for all t ∈ [0, t1].

This implies that y is a solution to the initial value problem (3.1). Denote
this solution by y1.

Step 4. Consider now the problem

(3.4)

{
y′ ∈ F2(t, y), t ∈ [(t1, t2)],

y(t+1 ) = I1((y1(t−1 )),

where the set valued map F2 is given by

F2(t, y) :=





[φ(t, s1), ψ(t, s1)] if y < s1

[φ(t, y), ψ(t, y)] if s1 ≤ y ≤ r1

[φ(t, r1), ψ(t, r1)] if y > r1

Proceeding as in the above three steps we show that any solution of
the problem (3.4) is a fixed point of the set valued map H2 defined
by H2y := L−1G2jy where L−1 : L2([t1, t2],R) → H1([t1, t2],R), j :
H1([t1, t2],R) −→ C([t1, t2],R) is the completely continuous embedding, and

G2y :=
{

u : [t1, t2] −→ Rmeasurable : u(t) ∈ F2(t, y(t)) for a.e. t ∈ [t1, t2]
}

.

Similarly, we can show that the set

U2 := {y ∈ C([t1, t2],R) : λy ∈ H2(y) for some λ > 1}

is bounded. We again apply Lemma 1 to show that H2 has a fixed point,
which we denote by y2, and so is a solution to problem (3.4) on the interval
[t1, t2].

We now show that s1 ≤ y2(t) ≤ r1 for all t ∈ [t1, t2]. Since y1(t−1 ) ∈
[s0, r0] condition (C1) (ii) implies that

s1 ≤ I1(y1(t−1 )) ≤ r1.
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Hence

s1 ≤ y(t+1 ) ≤ r1.

Also, condition (C1) (iii) implies that

s1 ≤ y2(t) ≤ r1 for t ∈ [t1, t2],

and hence y2 is a solution to

{
y′ ∈ F (t, y), t ∈ [(t1, t2)],

y(t+1 ) = I1(y1(t−1 )).

Step 5. We continue the above process and construct solutions yk on
[tk−1, tk], for k = 3, . . . ,m + 1, to

{
y′ ∈ F (t, y), t ∈ [(tk−1, tk)],

y(t+k−1) = Ik−1(yk−1(t−k−1)),

with sk−1 ≤ yk(t) ≤ rk−1 for t ∈ [tk−1, tk]. Then

y(t) =





y1(t) t ∈ [0, t1]
y2(t) t ∈ [t1, t2]
.
.
.
ym+1(t) t ∈ [tm, T ]

is a solution to (1.1) – (1.3). This completes the proof of the theorem.

Using the same reasoning as that used above we can obtain the following
result.

Theorem 2. Let t0 = 0, tm+1 = T . Suppose that, in addition to (H1), (H2)
and (H3), the following condition is satisfied

(C2) There exist functions {rj}m
j=0, {sj}m

j=0 continuous on [tj , tj+1] such
that
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(i) s0(t) ≤ y0 ≤ r0(t) for each t ∈ [0, t1];
(ii) sj(t) ≤ rj(t) for each t ∈ [tj , tj+1], j = 1, . . . , m;
(iii) sj+1(t+j+1) ≤ min[sj(t

−
j+1),rj(t

−
j+1)]

Ij+1(y) ≤ max[sj(t
−
j+1,rj(t

−
j+1)]

Ij+1(y) ≤
rj+1(t+j+1), j = 0, 1, . . . , m− 1;

(iv)
∫ βj

αj
φ(t, sj(t))dt ≥ sj(βj)−sj(αj) and

∫ βj

αj
ψ(t, rj(t))dt ≤ rj(βj)−rj(αj)

with tj ≤ αj < βj ≤ tj+1, j = 0, . . . , m.

Then the impulsive initial value problem (1.1) – (1.3) has at least one
solution.
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[3] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces,
Marcel Dekker, New York 1980.

[4] M. Benchohra and A. Boucherif, On first order initial value problems for
impulsive differential inclusions in Banach Spaces, Dyn. Syst. Appl. 8 (1)
(1999), 119–126.

[5] M. Benchohra and A. Boucherif, Initial Value Problems for Impulsive Differ-
ential Inclusions of First Order, Diff. Eq. and Dynamical Systems 8 (1) (2000),
51–66.

[6] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-
New York, 1992.

[7] L. Erbe and W. Krawcewicz, Existence of solutions to boundary value problems
for impulsive second order differential inclusions, Rockey Mountain J. Math.
22 (1992), 519–539.



On initial value problems for a class of ... 171

[8] D. Franco, Problemas de frontera para ecuaciones diferenciales con impulsos,
Ph.D Thesis, Univ. Santiago de Compostela (Spain), 2000 (in Spanish).

[9] M. Frigon and D. O’Regan, Existence results for first order impulsive differ-
ential equations, J. Math. Anal. Appl. 193, (1995), 96–113.

[10] M. Frigon and D. O’Regan, Boundary value problems for second order
impulsive differential equations using set-valued maps, Rapport DMS–357,
University of Montreal 1993.

[11] M. Frigon and D. O’Regan, First order impulsive initial and periodic value
problems with variable moments, J. Math. Anal. Appl. 233 (1999), 730–739.
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