ArticleOriginal scientific text

Title

On initial value problems for a class of first order impulsive differential inclusions

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, University of Sidi Bel Abbes, BP 89, 22000 Sidi Bel Abbes, Algeria
  2. Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, B.O. Box 5046 Dhahran 31261, Saudi Arabia
  3. Department of Mathematical Analysis, University de Santiago de Compostela, Santiago de Compostela 15706 A Coruña, Spain

Abstract

We investigate the existence of solutions to first order initial value problems for differential inclusions subject to impulsive effects. We shall rely on a fixed point theorem for condensing maps to prove our results.

Keywords

impulsive initial value problem, set-valued map, condensing map, fixed point

Bibliography

  1. J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston 1990.
  2. J.M. Ayerbe, T. Dominguez and G. Lopez-Acebo, Measure of Noncompactness in Metric Fixed Point Theory, Birkhäuser, Basel 1997.
  3. J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York 1980.
  4. M. Benchohra and A. Boucherif, On first order initial value problems for impulsive differential inclusions in Banach Spaces, Dyn. Syst. Appl. 8 (1) (1999), 119-126.
  5. M. Benchohra and A. Boucherif, Initial Value Problems for Impulsive Differential Inclusions of First Order, Diff. Eq. and Dynamical Systems 8 (1) (2000), 51-66.
  6. K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992.
  7. L. Erbe and W. Krawcewicz, Existence of solutions to boundary value problems for impulsive second order differential inclusions, Rockey Mountain J. Math. 22 (1992), 519-539.
  8. D. Franco, Problemas de frontera para ecuaciones diferenciales con impulsos, Ph.D Thesis, Univ. Santiago de Compostela (Spain), 2000 (in Spanish).
  9. M. Frigon and D. O'Regan, Existence results for first order impulsive differential equations, J. Math. Anal. Appl. 193, (1995), 96-113.
  10. M. Frigon and D. O'Regan, Boundary value problems for second order impulsive differential equations using set-valued maps, Rapport DMS-357, University of Montreal 1993.
  11. M. Frigon and D. O'Regan, First order impulsive initial and periodic value problems with variable moments, J. Math. Anal. Appl. 233 (1999), 730-739.
  12. M. Frigon, Application de la théorie de la transversalité topologique à des problèmes non linéaires pour des équations différentielles ordinaires, Dissertationes Math. 296 (1990), 1-79.
  13. Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer, Dordrecht, Boston, London 1997.
  14. V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore 1989.
  15. X. Liu, Nonlinear boundary value problems for first order impulsive differential equations, Appl. Anal. 36 (1990), 119-130.
  16. E. Liz and J.J. Nieto, Positive solutions of linear impulsive differential equations, Commun. Appl. Anal. 2 (4) (1998), 565-571.
  17. E. Liz, Problemas de frontera para nuevos tipos de ecuaciones diferenciales, Ph.D Thesis, Univ. Vigo (Spain) 1994 (in Spanish).
  18. M. Martelli, A Rothe's type theorem for non compact acyclic-valued maps, Boll. Un. Mat. Ital. 4 (3) (1975), 70-76.
  19. C. Pierson-Gorez, Problèmes aux Limites Pour des Equations Différentielles avec Impulsions, Ph.D. Thesis, Univ. Louvain-la-Neuve, Belgium 1993 (in French).
  20. A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore 1995.
  21. D. Yujun and Z. Erxin, An application of coincidence degree continuation theorem in existence of solutions of impulsive differential equations, J. Math. Anal. Appl. 197 (1996), 875-889.
Pages:
159-171
Main language of publication
English
Received
2000-05-20
Published
2001
Exact and natural sciences