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1. Introduction

In this paper, we deal with the following multivalued boundary value
problem:

{ (‖x′(t)‖p−2x′(t)
)′ ∈ A(x(t)) + F (t, x(t), x′(t)) a.e. on T = [0, b]

(ϕ(x′(0)),−ϕ(x′(b))) ∈ ξ(x(0), x(b)), 2 ≤ p < ∞.

}
(1)

Here A : RN → 2R
N

is a maximal monotone map, F : T×RN×RN → 2R
N

is
a multifunction and ϕ : RN → RN is defined by ϕ(r) = ‖r‖p−2r. In a recent
paper (see Bader-Papageorgiou [2]), the authors studied (1) with F single-
valued and proved two existence theorems. This work extends the results
investigated in Bader-Papageorgiou [2] to the multivalued boundary prob-
lem. At the same time it extends the set-valued results of Erbe-Krawcewicz
[7], Frigon [9], Halidias-Papageorgiou [11] and Kandilakis-Papageorgiou [14],
where the inclusion is semilinear (i.e. p = 2) and A = 0. Moreover, our
boundary conditions are general nonlinear boundary conditions, which get
a unified treatment of the classical boundary value problems, such as the
Dirichlet problem, the Neumann problem and the periodic problem. Fi-
nally, we should also mention the recent works on problems involving the one
dimensional p-Laplacian, by Boccardo-Drabek-Giachetti-Kucera [3], Dang-
Oppenheimer [4], Del Pino-Elgueta-Manasevich [5], Del Pino-Manasevich-
Murua [6], Fabry-Fayyad [8], Guo [10], and Manasevich-Mawhin [15]. We
point out that in all these works F is single-valued, A = 0, the boundary
conditions are among the classical ones (Dirichlet, Neumann and periodic)
and with the exception of Manasevich-Mawhin, they all deal with the scalar
problem (i.e. N = 1).

Our approach is based on notions and results from multivalued analysis
and from the theory of nonlinear operators of monotone type. They lead
to an eventual application of a generalized version of the Leray-Schauder
alternative principle, proved recently by Bader [1]. In Section 2, we recall
the basic definitions and facts from multivalued analysis and the theory of
monotone operators, which we will need in the sequel. Our main sources are
the books of Hu-Papageorgiou [13] and Zeidler [17].

2. Mathematical preliminaries

Let (Ω, Σ) be a measurable space and X a seperable Banach space. We
introduce the following notations: Pf(c)(X) = {A ⊆ X : A is nonempty,
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closed (and convex)} and P(w)k(c)(X) = {A ⊆ X : A is nonempty, (weakly-)
compact (and convex)}. A multifunction F : Ω → Pf (X) is said to be
measurable, if for all x ∈ X,ω 7→ d(x, F (ω)) is measurable. Also we say that
F : Ω → 2X \ {∅} is graph measurable, if GrF = {(ω, x) ∈ Ω × X : x ∈
F (ω)} ∈ Σ × B(X), with B(X) being the Borel σ-field of X. For Pf (X)-
valued multifunctions, measurability implies graph measurability, while the
converse is true if Σ is complete (i.e. Σ = Σ̂ = the universal σ-field). Recall
that if µ is a measure on Σ and Σ is µ-complete, then Σ = Σ̂. Now let
(Ω, Σ, µ) be a finite measure space. Given a multifunction F : Ω → 2X \ {∅}
and 1 ≤ p ≤ ∞, we introduce the set Sp

F = {f ∈ Lp(Ω, X) : f(ω) ∈
F (ω) µ-a.e.}. In general, this set may be empty. It is easy to check that if
ω 7→ inf{‖x‖ : x ∈ F (ω)} ∈ Lp(Ω), then Sp

F 6= ∅.
Let Y, Z be Hausdorff topological spaces. A multifunction G : Y →

2Z \ {∅} is said to be lower semicontinuous (lsc for short) (resp. upper
semicontinuous (usc for short)), if for all C ⊆ Z closed, then the set G+(C) =
{y ∈ Y : G(y) ⊆ C}(resp. G−(C) = {y ∈ Y : G(y) ∩C 6= ∅}) is closed in Y .
An usc multifunction G has a closed graph (i.e. GrG = {(y, z) ∈ Y × Z :
z ∈ G(y)} is closed), while the converse is true if G is locally compact. Also
if Z is a metric space, then G is lsc if and only if for every yn → y in Y ,
we have G(y) ⊆ limG(yn) = {z ∈ Z : lim d(z, G(yn)) = 0} = {z ∈ Z : z =
lim zn, zn ∈ G(yn), n ≥ 1}.

Let X be a reflexive Banach space and X∗ its dual. A map A : D ⊆
X → 2X∗

is said to be monotone, if for all (x, x∗), (y, y∗) ∈ GrA, we have
(x∗ − y∗, x − y) ≥ 0 (by (·, ·) we denote the duality brackets for the pair
(X, X∗)). When (x∗ − y∗, x − y) = 0 implies that x = y, then we say that
A is strictly monotone. The map A is said to be maximal monotone, if
(x∗ − y∗, x − y) ≥ 0 for all (x, x∗) ∈ GrA, imply that (y, y∗) ∈ GrA. So
according to this definition the graph of A is maximal with respect to the
inclusion among the graphs of all monotone maps from X into 2X∗

. It is easy
to see that a maximal monotone map A has a demiclosed graph, i.e. GrA is
sequentially closed in X×X∗

w or in Xw×X∗ (here by Xw and X∗
w we denote

the spaces X and X∗ furnished with their respective weak topologies). If
A : X → X∗ is every where defined, single-valued map, we say that A is
demicontinuous, if xn → x in X implies that A(xn) w→ A(x) in X∗. A map
A : X → X∗ which is monotone and demicontinuous, is maximal monotone.
Also a map A : D ⊆ X → 2X∗

is said to be coercive, if D ⊆ X is bounded
or if D is unbounded and inf[(x∗,x):x∗∈A(x)]

‖x‖ → ∞ as ‖x‖ → ∞, x ∈ D. A
maximal monotone, coercive map is surjective.
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Let Y,Z be Banach spaces and K : Y → Z a generally nonlinear map.
We say

(a) K is completely continuous, if yn
w→ y in Y implies K(yn) → K(y) in Z;

(b) K is compact, if K is continuous and maps bounded sets into relatively
compact sets.

In general, these are two distinct notions. However, if Y is reflexive, then
complete continuity implies compactness. Moreover, if Y is reflexive and K
is linear, then the two notions are equivalent.

Finally, we will need the following generalization of the Leray- Schauder
principle. Let X,Y be Banach spaces, G : X → Pwkc(Y ) an usc multifunc-
tion from X into Yw and K : Y → X a completely continuous map. We set
Φ = K ◦G. We have the following alternative principle (see Bader [1]):

Proposition 1. If X, Y and Φ are as above and Φ is compact, then the set

S = {x ∈ X : x ∈ λΦ(x) for some 0 < λ < 1}

is unbounded or otherwise Φ has a fixed point.

3. An auxiliary problem

In this section, we consider the following“regular” approximation to
problem (1):

{ (‖x′(t)‖p−2x′(t)
)′ ∈ Aλ(x(t)) + F (t, x(t), x′(t)) a.e. on T

(ϕ(x′(0)),−ϕ(x′(b))) ∈ ξ(x(0), x(b)), λ > 0.

}
(2)

Here for every λ > 0, Aλ : RN → RN is the Yosida approximation of the
maximal monotone map A. First we will establish the existence of solutions
for problem (2), when F takes convex values (“convex problem”). For this
purpose we introduce the following hypothesis on the data of (2).

H(A)1: A : RN → 2R
N

is a maximal monotone map such that 0 ∈ A(0).

Remark. In fact, it is enough to assume that 0 ∈ domA = {x ∈ RN :
A(x) 6= ∅} and then by translation we can have 0 ∈ A(0).

H(F )1: F : T × RN × RN → Pkc(RN ) is a multifunction such that
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(i) for all (x, y) ∈ RN × RN , t → F (t, x, y) is graph measurable;
(ii) for almost all t ∈ T, (x, y) → F (t, x, y) has a closed graph;
(iii) for almost all t ∈ T , all x, y ∈ RN and all v ∈ F (t, x, y), we have

(v, x)RN ≥ −a‖x‖p − γ‖x‖r‖y‖p−r − c(t)‖x‖s

with a, γ ≥ 0, 1 ≤ r, s < p and c ∈ L1(T );
(iv) there exists M > 0 such that if ‖x0‖ > M and (x0, y0)RN = 0, then we

can find δ > 0 and ξ > 0 such that for almost all t ∈ T

inf [(v, x)RN + ‖y‖p : ‖x− x0‖+ ‖y − y0‖ < δ, v ∈ F (t, x, y)] ≥ ξ > 0;

(v) for almost all t ∈ T , all x, y ∈ RNand all v ∈ F (t, x, y)

‖v‖ ≤ γ1(t, ‖x‖) + γ2(t, ‖x‖)‖y‖p−1

with sup0≤r≤k γ1(t, r) ≤ η1,k(t) a.e. on T , η1,k ∈ Lq(T ) (1
p + 1

q = 1) and
sup0≤r≤k γ2(t, r) ≤ η2,k(t) a.e. on T , η2,k ∈ L∞(T ).

Remark. Hypothesis H(F )1 (iv) is an appropriate extension of the
Nagumo-Hartman condition (see Hartman [12], p. 432–433).

H(ξ): ξ : RN × RN → 2R
N×RN

is a maximal monotone map such that
(0, 0) ∈ ξ(0, 0) and one of the following holds:

(i) for every (a′, d′) ∈ ξ(a, d) we have (a′, a)RN ≥ 0 and (d′, d)RN ≥ 0;
or

(ii) domξ = {(a, d) ∈ RN × RN : a = d}.

Proposition 2. If hypotheses H(A)1, H(F )1 and H(ξ) hold, then problem
(2) has a solution x ∈ C1(T,RN ).

Proof. Let

D = {x ∈ C1(T,RN ) : ‖x′(·)‖p−2x′(·) ∈ W 1,q(T,RN ),

(ϕ(x′(0)),−ϕ(x′(b))) ∈ ξ(x(0), x(b))}

and let V : D ⊆ Lp(T,RN ) → Lq(T,RN ) be defined by
V (x)(·) = − (‖x′(·)‖p−2x′(·))′ , x ∈ D.
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From Proposition 3 of Bader-Papageorgiou [2], we know that V is
maximal monotone. Also let Âλ : Lp(T,RN ) → Lq(T,RN ) be the Nemitsky
operator corresponding to the Yosida approximation Aλ, i.e. Âλ(x)(·)
= Aλ(x(·)) and let J : Lp(T,RN ) → Lq(T,RN ) be defined by J(x)(·)
= ‖x(·)‖p−2x(·). Consider the map Kλ = V + Âλ + J . Note that Âλ

and J are both monotone, continuous, thus maximal monotone. So from
Theorem III. 3.3, p. 334, of Hu-Papageorgiou [13], we have that Kλ is
maximal monotone. Because 0 = Aλ(0), we have

(Kλ(x), x)pq ≥ (V (x), x)pq + (J(x), x)pq,

where by (·, ·)pq we denote the duality brackets for the pair (Lp(T,RN ),
Lq(T,RN )). Using Green’s identity, the fact that if x ∈ D, then (ϕ(x′(0)),
−ϕ(x′(b))) ∈ ξ(x(0), x(b)) and hypothesis H(ξ), we obtain

(V (x), x)pq = −
∫ b

0

(
(‖x′(t)‖p−2x′(t))′, x(t)

)
RN dt

=
(−‖x′(b)‖p−2x′(b), x(b)

)
RN +

(‖x′(0)‖p−2x′(0), x(0)
)
RN + ‖x′‖p

p ≥ ‖x′‖p
p.

Also (J(x), x)pq = ‖x‖p
p. So we obtain

(Kλ(x), x)pq ≥ ‖x′‖p
p + ‖x‖p

p = ‖x‖p
1,p,

where ‖ · ‖1,p denotes the norm in the Sobolev space W 1,p(T,RN ). From
this last inequality we infer that Kλ is coercive. But recall (see Section 2)
that a maximal monotone and coercive operator is surjective. So R(Kλ) =
Lq(T,RN ). Also it is clear that J is strictly monotone and so it follows that
Kλ is injective. Hence we can define the operator K−1

λ : Lq(T,RN ) → D ⊆
W 1,p(T,RN ).

Claim 1. K−1
λ : Lq(T,RN ) → D ⊆ W 1,p(T,RN ) is completely continuous.

Note that by virtue of the reflexivity of Lq(T,RN ), complete continuity
implies compactness. Assume that yn

w→ y in Lq(T,RN ) and set xn =
K−1

λ (yn), n ≥ 1, and x = K−1
λ (y). We have

yn = V (xn) + Âλ(xn) + J(xn).

⇒ (yn, xn)pq = (V (xn), xn)pq + (Âλ(xn), xn)pq + (J(xn), xn)pq

⇒ ‖xn‖p
1,p ≤ ‖yn‖q‖xn‖p.
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From the last inequality it follows that {xn}n≥1 ⊆ W 1,p(T,RN ) is bounded.
Hence by passing to a subsequence if necessary, we may assume that xn

w→ z
in W 1,p(T,RN ) and from the compact embedding of W 1,p(T,RN ) into
Lp(T,RN ), we also have xn → z in Lp(T,RN ). Then

(yn, xn − z)pq, (Âλ(xn), xn − z)pq and (J(xn), xn − z)pq → 0 as n →∞,

⇒ lim(V (xn), xn − z)pq = 0.

But as we have already mentioned V is maximal monotone and so according
to Remark III. 6.3, p. 365, of Hu-Papageorgiou [13], we have that V is also
generalized pseudomonotone, which implies that V (xn) w→ V (z) in
Lq(T,RN ). So in the limit as n →∞ we obtain

y = V (z) + Âλ(z) + J(z)

⇒ z = K−1
λ (y), i.e. z = x.

Moreover, note that {un = ‖x′n‖p−2x′n}n≥1 ⊆ W 1,q(T,RN ) is bounded and
so we may assume that un

w→ u in W 1,q(T,RN ). From the compact embed-
ding of W 1,q(T,RN ) into C(T,RN ), we have that un

w→ u in C(T,RN ). Since
ϕ : RN → RN is a homeomorphism, we have that ϕ−1(un) = x′n → ϕ−1(u)
in Lp(T,RN ). Therefore ϕ−1(u) = x′ and so xn → x in W 1,p(T,RN ) which
proves the claim. Next let NF : W 1,p(T,RN ) → 2Lq(T,RN ) be the multivalued
Nemitsky operator corresponding to F , i.e. NF (x) = Sq

F (·,x(·),x′(·)).

Claim 2. NF has values in Pwkc(Lq(T,RN )) and is usc from W 1,p(T,RN )
into Lq(T,RN )w. Note that hypotheses H(F )1 (i) and (ii), do not imply
joint measurability of F and so it is not immediately clear that NF has
nonempty values. Let x ∈ W 1,p(T,RN ). We can find {sn}n≥1, {rn}n≥1

step functions such that ‖sn(t)‖ ≤ ‖x(t)‖, ‖rn(t)‖ ≤ ‖x′(t)‖, sn(t) → x(t)
and rn(t) → x′(t) a.e. on T . By virtue of hypothesis H(F )1 (i), for every
n ≥ 1, t 7→ F (t, sn(t), rn(t)) is measurable. So we can apply the Yankov-von
Neumann-Aumann selection theorem (see Hu-Papageorgiou [13], Theorem
II. 2.14, p. 158) and obtain fn : T → RN a measurable map such that
fn(t) ∈ F (t, sn(t), rn(t)) a.e. on T . Evidently {fn}n≥1 ⊂ Lq(T,RN ) is
bounded (see hypothesis H(F )1 (v)) and so we may assume that fn

w→ f in
Lq(T,RN ). Invoking Proposition VII. 3.9, p. 694, of Hu-Papageorgiou [13],
we obtain

f(t) ∈ conv lim F (t, sn(t), rn(t)) ⊂ F (t, x(t), x′(t)) a.e. on T,
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the last inclusion following from the fact that for almost all t ∈ T, GrF (t, ·, ·)
is closed (see hypothesis H(F )1 (i)). So f ∈ NF (x) and we have established
that NF has nonempty values. It is clear that the values of NF are bounded,
closed, convex, hence they belong to Pwkc(Lq(T,RN )). Next we will show
the upper semicontinuity of NF from W 1,p(T,RN ) into Lq(T,RN )w.

From hypothesis H(F )1 (v), we see that NF is locally compact
into Lq(T,RN )w and so by virtue of Proposition I. 2.23, p. 43, of Hu-
Papageorgiou [13] and the fact that on bounded sets in Lq(T,RN )w, the
weak topology is metrizable, it suffices to show that GrNF is sequentially
closed in W 1,p(T,RN ) × Lq(T,RN )w. So let (xn, fn) ∈ GrNF , n ≥ 1, and
assume that xn → x in W 1,p(T,RN ) and fn

w→ f in Lq(T,RN ). We may
assume that xn(t) → x(t) and x′n(t) → x′(t) a.e. on T and so as above
via Proposition VII. 3.9, p. 694, of Hu-Papageorgiou [13], we show that
(x, f) ∈ GrNF . This completes the proof of the claim. Let N1 = −NF + J.
Evidently N1 : W 1,p(T,RN ) → Pwkc(Lq(T,RN )) is usc from W 1,p(T,RN )
into Lq(T,RN )w. We consider the multivalued operator

K−1
λ ◦N1 : W 1,p(T,RN ) → Pk(W 1,p(T,RN )).

This map is usc and maps bounded sets into relatively compact ones (i.e.
K−1

λ ◦ N1 is compact). So in order to be able to apply Proposition 1 and
obtain a fixed point of K−1

λ ◦N1, we need to prove the following claim:

Claim 3. The set

S = {x ∈ W 1,p(T,RN ) : x ∈ βK−1
λ ◦N1(x), 0 < β < 1}

is bounded.
Let x ∈ S. We have

Kλ

(
1
β

x

)
∈ N1(x),

⇒ V

(
1
β

x

)
+ Âλ

(
1
β

x

)
+ J

(
1
β

x

)
∈ −NF (x) + J(x),

⇒
(

V (
1
β

x), x
)

pq

+
(

Âλ(
1
β

x), x
)

pq

+
(

J(
1
β

x), x
)

pq

= (−f, x)pq + (J(x), x)pq, f ∈ NF (x).
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Since Âλ is monotone and 0 = Âλ(0), it follows that
(
Âλ( 1

β x), x
)

pq
≥ 0.

Also
(

V (
1
β

x), x
)

pq

= −
∫ b

0

1
βp−1

(
(‖x′(t)‖p−2x′(t))′, x(t)

)
RN dt

= −
(

1
βp−1

‖x′(b)‖p−2x′(b), x(b)
)

RN

+
(

1
βp−1

‖x′(0)‖p−2x′(0), x(0)
)

RN

+
1

βp−1
‖x′‖p

p

≥ 1
βp−1

‖x′‖p
p (from the boundary conditions and hypothesis H(ξ)).

So we obtain

1
βp−1

‖x′‖p
p +

1
βp−1

‖x‖p
p ≤ −(f, x)pq + ‖x‖p

p

⇒ ‖x′‖p
p ≤ −βp−1(f, x)pq + (βp−1 − 1)‖x‖p

p

≤ −βp−1(f, x)pq (since 0 < β < 1).

(3)

From hypothesis H(F )1 (iii), we have

−βp−1(f, x)pq = βp−1

∫ b

0
− (f(t), x(t))RN dt

≤ βp−1a‖x‖p
p + βp−1γ

∫ b

0
‖x(t)‖r‖x′(t)‖p−rdt + βp−1‖c‖1‖x‖s

∞.

Let τ = p− r, µ = p
r abd µ′ = p

τ ( 1
µ + 1

µ′ = 1). Applying Hölder’s inequality
with this pair of conjugate exponents, we obtain

∫ b

0
‖x(t)‖r‖x′(t)‖p−rdt ≤

(∫ b

0
‖x(t)‖rµdt

) 1
µ
(∫ b

0
(‖x′(t)‖τµ′dt

) 1
µ′
≤ ‖x‖r

p‖x′‖τ
p.

It follows that

−βp−1(f, x)pq ≤ βp−1a‖x‖p
p + βp−1γ‖x‖r

p‖x′‖τ
p + βp−1‖c‖1‖x‖s

∞.(4)

We will show that for every x ∈ S, ‖x‖∞ ≤ M with M as in hypothesis
H(F )1 (iv). For this purpose we introduce the function r(t) = ‖x(t)‖p



136 R. Bader and N.S. Papageorgiou

and let t0 ∈ T be the point where r attains its maximum on T . Suppose
that Mp < r(t0) and first suppose that t0 ∈ (0, b). We have 0 = r′(t0) =
p‖x(t0)‖p−2(x(t0), x′(t0))RN and so (x(t0), x′(t0))RN = 0 (unless x ≡ 0 in
which case we trivially have ‖x‖∞ ≤ M). Then from hypothesis H(F )1
(iv), we know that there exists δ > 0 and ξ > 0 such that

inf
[
(v, x)RN + ‖y‖p : ‖x− x(t0)‖+ ‖y − x′(t0)‖ < δ, v ∈ F (t, x, y)

] ≥ ξ > 0.

Because x ∈ S, we have x ∈ D and so ‖x′(·)‖p−2x′(·) ∈ W 1,q(T,RN ) ⊆
C(T,RN ). Because ϕ is a homeomorphism, it follows that
ϕ−1(‖x′(·)‖p−2x′(·)) = x′(·) ∈ C(T,RN ). Also x ∈ W 1,p(T,RN ) ⊆
C(T,RN ). Thus for δ > 0 as above, we can find δ1 > 0 such that if
t ∈ (t0, t0 + δ1], we have

‖x(t)− x(t0)‖+ ‖x′(t)− x′(t0)‖ < δ.

Therefore for almost all t ∈ (t0, t0 + δ1] and all v ∈ F (t, x(t), x′(t)), we have

βp−1(v, x(t))RN + βp−1‖x′(t)‖p ≥ βp−1ξ

⇒ βp−1(f(t), x(t))RN + βp−1‖x′(t)‖p ≥ βp−1ξ.
(5)

Recall that

V

(
1
β

x

)
+ Âλ

(
1
β

x

)
+ J

(
1
β

x

)
= −f + J(x)

⇒ − (‖x′(t)‖p−2x′(t)
)′ + βp−1Aλ

(
1
β

x(t)
)

= −βp−1f(t) + (βp−1 − 1)‖x(t)‖p−2x(t) a.e. on T ,

⇒ βp−1f(t) =
(‖x′(t)‖p−2x′(t)

)′ − βp−1Aλ

(
1
β

x(t)
)

+ (βp−1 − 1)‖x(t)‖p−2x(t) a.e. on T .

Using this in (5), we obtain

(
(‖x′(t)‖p−2x′(t))′, x(t)

)
RN − βp−1

(
Aλ(

1
β

x(t)), x(t)
)

RN

+ (βp−1 − 1)‖x(t)‖p + βp−1‖x′(t)‖p

≥ βp−1ξ a.e. on (t0, t0 + δ1].
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Note that (βp−1 − 1)‖x(t)‖p ≤ 0 (since 0 < β < 1) and (Aλ( 1
β x(t)), x(t))RN

≥ 0 (since Aλ is monotone and Aλ(0) = 0). Thus after integration over
[t0, t], t ∈ (t0, t0 + δ1], we obtain

∫ t

t0

(
(‖x′(s)‖p−2x′(s))′, x(s)

)
RN ds + βp−1

∫ t

t0

‖x′(s)‖pds ≥ βp−1ξ(t− t0).(6)

From Green’s identity, we have

∫ t

t0

(
(‖x′(s)‖p−2x′(s))′, x(s)

)
RN ds = ‖x′(t)‖p−2(x′(t), x(t))RN

− ‖x′(t0)‖p−2(x′(t0), x(t0))RN −
∫ t

t0

‖x′(s)‖pds

= ‖x′(t)‖p−2(x′(t), x(t))RN −
∫ t

t0

‖x′(s)‖pds (since (x(t0), x′(t0))RN = 0).

Using this equality in (6), we have

‖x′(t)‖p−2(x′(t), x(t))RN + (βp−1 − 1)
∫ t

t0

‖x′(s)‖pds ≥ βp−1ξ(t− t0)

⇒ ‖x′(t)‖p−2(x′(t), x(t))RN ≥ βp−1ξ(t− t0)

(since 0 < β < 1), t ∈ (t0, t0 + δ1]

⇒ (x(t), x′(t))RN > 0

⇒ r′(t) > 0 for all t ∈ (t0, t0 + δ1],

i.e. r is strictly increasing on (t0, t0 + δ1].
This contradicts the choice of t0 ∈ T . So ‖x(t0)‖ ≤ M and this

proves the desired bound when t ∈ (0, b). Suppose t0 = 0. Then
r′(0) ≤ 0 and so (x(0), x′(0))RN ≤ 0. If condition H(ξ) (i) is satisfied
we have (x(0), x′(0))RN ≥ 0 and so (x(0), x′(0))RN = 0, i.e. r′(0) = 0.
Thus we can proceed as before. If hypothesis H(ξ) (ii) holds, we have
x(0) = x(b) and r′(0) ≤ 0 ≤ r′(b). So (x′(0), x(0))RN ≤ 0 ≤ (x′(b), x(b))RN ,
while from the fact that (ϕ(x′(0)),−ϕ(x′(b))) ∈ ξ(x(0), x(b)), we have that
(x′(b), x(b))RN ≤ (x′(0), x(0))RN (recall that (0, 0) ∈ ξ(0, 0)). Thus finally,
we have 0 = (x′(0), x(0))RN = (x′(b), x(b))RN and so r′(0) = r′(b) = 0 and
we can repeat the previous argument. Similarly, we can analyze the case
t0 = b. Hence we have proved that for all x ∈ S, ‖x‖∞ ≤ M .
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Using (4) in (3) we obtain

‖x′‖p
p ≤ βp−1a‖x‖p

p + βp−1γ‖x‖r
p‖x′‖τ

p + βp−1‖c‖1‖x‖s
∞

≤ c1 + c2‖x′‖τ
p (τ < p) for some c1, c2 > 0.

So {x′}x∈S is bounded in Lp(T,RN ). Since ‖x‖∞ ≤ M for all x ∈ S, we
infer that S ⊆ W 1,p(T,RN ) is bounded. Applying Proposition 1, we obtain
x ∈ D such that x ∈ K−1

λ ◦N1(x) ⇒ Kλ(x) ∈ N1(x) ⇒ x solves the auxiliary
problem (2).

In the above result F was convex-valued. We can still have an existence
theorem for (2), even if F is not necessarily convex-valued. More precisely,
we assume on F as follows:

H(F )2: F : T × RN × RN → Pk(RN ) is a multifunction such that

(i) (t, x, y) ∈ RN × RN , t → F (t, x, y) is graph measurable;
(ii) for almost all t ∈ T, (x, y) → F (t, x, y) is lsc;

and conditions (iii), (iv) and (v) of hypothesis H(F )1 hold.

Proposition 3. If hypothesis H(A)1,H(F )2 and H(ξ) hold then there exists
a solution x ∈ C1(T,RN ) to problem (2).

Proof. As before let NF : W 1,p(T,RN ) → 2Lq(T,RN ) be the multivalued
Nemitsky operator corresponding to F , i.e. NF (x) = Sp

F (·,x(·),x′(·)). By
virtue of hypothesis H(F )2 and the Yankov-von Neumann-Aumann selection
theorem (see Hu-Papageorgiou [13], Theorem II. 2.14, p. 158), we have that
NF has values in Pf (Lq(T,RN )).

Claim. NF is lsc from W 1,p(T,RN ) to Lq(T,RN ). Let C ⊆ Lq(T,RN )
closed. We will show that N+

F (C) = {x ∈ W 1,p(T,RN ) : NF (x) ⊆ C}
is closed. To this end, let xn ∈ N+

F (C) and assume that xn → x in
W 1,p(T,RN ). By passing to a subsequence if necessary, we may assume
that xn(t) → x(t) for all t ∈ T and x′n(t) → x′(t) a.e. on T . Let f ∈ NF (x)
and let fn ∈ NF (xn) such that ‖f − fn‖q ≤ d(f,NF (xn)) + 1

n .
From Hu-Papageorgiou [13], p. 237, we have

d(f,NF (xn)) =
(∫ b

0
d(f(t), F (t, xn(t), x′n(t)))qdt

) 1
q
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Since F (t, ·, ·) is lsc, from Proposition I. 2.26, p. 45, of Hu-Papageorgiou [13],
we have that for all v ∈ RN , (x, y) 7→ d(v, F (t, x, y)) is upper semicontinuous.
Then by Fatou’s lemma, we have

lim d(f, NF (xn)) ≤
(∫ b

0
d(f(t), F (t, x(t), x′(t)))qdt

) 1
q

= 0

and therefore ‖f −fn‖q → 0 as n →∞. Because fn ∈ C and C is closed, we
have f ∈ C. Since f ∈ NF (x) was arbitrary, we infer that x ∈ N+

F (C) and so
NF is lsc as claimed. Apply Theorem II. 8.7, p. 245, of Hu-Papageorgiou [13],
to obtain u : W 1,p(T,RN ) → Lq(T,RN ) continuous such that u(x) ∈ NF (x)
for every x ∈ W 1,p(T,RN ). Consider the following single-valued boundary
value problem

{ (‖x′(t)‖p−2x′(t)
)′ ∈ Aλ(x(t)) + u(x)(t) a.e. on T

(ϕ(x′(0)),−ϕ(x′(b))) ∈ ξ(x(0), x(b)), λ > 0.

}
(7)

As in the proof of Proposition 2, using the Leray-Schauder alternative
theorem (the single-valued version of Proposition 1), we obtain a solution
x ∈ C1(T,RN ) to problem (7). Evidently this solves problem (2).

4. Existence Theorems

In this case using Propositions 2 and 3, we obtain existence theorems for the
convex and nonconvex problems, for two different situations. In the first one
we assume that domA = RN , while in the other we are able to assume that
domA 6= RN at the expense of slightly strengthening the growth hypothesis
on F (t, x, y). This case is of special interest since it incorporates variational
inequalities. We start with the analysis of the problem in which A is defined
everywhere, i.e. domA = {x ∈ RN : A(x) 6= ∅} = RN . More precisely, we
assume:

H(A)2: A : RN → 2R
N

is a maximal monotone map with domA = RN and
0 ∈ A(0).

Theorem 4. If hypotheses H(A)2, H(F )1 and H(ξ) hold, then problem (1)
has a solution x ∈ C1(T,RN ).
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Proof. Let λn → 0, λn > 0 and let xn ∈ C1(T,RN ) be solutions to the
approximate problem (2) (Proposition 2). From the proof of Proposition 2,
we know that ‖xn‖∞ ≤ M for all n ≥ 1. We have

V (xn) + Âλn(xn) = −fn, fn ∈ NF (xn)

⇒ (V (xn), xn)pq + (Âλn(xn), xn)pq = −(fn, xn)pq.

Using Green’s identity and the boundary conditions on the first term of
the left hand side and exploiting the monotonicity of Âλn and the fact that
0 = Âλn(0), we obtain

‖x′n‖p
p ≤ ‖fn‖q‖xn‖p ≤ c3‖fn‖q for some c3 > 0 and all n ≥ 1

⇒ ‖x′n‖p
p ≤ c3

(‖η1,M‖q + ‖η2,M‖∞‖x′n‖p−1
p

)
, (hypothesis H(F )1(v))

⇒ {x′n}n≥1 ⊆ Lp(T,RN ) is bounded,

⇒ {xn}n≥1 ⊆ W 1,p(T,RN ) is bounded.

So we may assume that xn
w→ x in W 1,p(T,RN ) and xn → x in Lp(T,RN ).

From Proposition III. 2.29, p. 325, of Hu-Papageorgiou [13], we know that
‖Aλn(xn(t))‖ ≤ ‖A0(xn(t))‖. Since domA = RN , from Theorem III. 1.21,
p. 306 of Hu-Papageorgiou [13], we know that A0 is bounded on compact
sets. Note that since {xn}n≥1 ⊆ W 1,p(T,RN ) is bounded, from the com-
pact embedding of W 1,p(T,RN ), we have that {xn}n≥1 is relatively com-
pact in C(T,RN ) and so supn≥1 ‖A0(xn(t))‖ ≤ c4 for some c4 > 0. Hence
‖Aλn(xn(t))‖ ≤ c4 for all t ∈ T and all n ≥ 1. Thus we may assume
that Âλn(xn) w→ u in Lq(T,RN ) as n → ∞. Repeating the argument in
Claim 1 in the proof of Proposition 2, we obtain xn → x in W 1,p(T,RN )
and ‖x′n‖p−2x′n

w→ ‖x′‖p−2x′ in W 1,q(T,RN ). Since fn ∈ NF (xn), n ≥ 1,
from Hypothesis H(F )1 (v), we see that {fn}n≥1 ⊆ Lq(T,RN ) is bounded
and so we may assume that fn

w→ f in Lq(T,RN ). As in the proof of Propo-
sition 2, using Proposition VII. 3.9, p. 694, of Hu-Papageorgiou [13], we
obtain f ∈ NF (x). Taking n →∞, we obtain

(‖x′(t)‖p−2x′(t))′ = u(t) + f(t) a.e. on T .

Also since ‖x′n‖p−2x′n
w→ ‖x′‖p−2x′ in W 1,q(T,RN ), we have ‖x′n‖p−2x′n →

‖x′‖p−2x′ in C(T,RN ) and so ϕ−1(‖x′n(t)‖p−2x′n(t)) = x′n(t) → x′(t) =
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ϕ−1(‖x′(t)‖p−2x′(t)) for all t ∈ T . Also, at least for a subsequence, we
have xn → x in C(T,RN ). Since (ϕ(x′n(0)),−ϕ(x′n(b)) ∈ ξ(xn(0), xn(b)) and
because Grξ is closed we conclude that (ϕ(x′(0)),−ϕ(x′(b)) ∈ ξ(x(0), x(b)).
So it remains to show that u(t) ∈ A(x(t)) a.e. on T . To this end, let
Â : D̂ ⊆ Lp(T,RN ) → 2Lq(T,RN ) be defined by

Â(x) = {g ∈ Lq(T,RN ) : g(t) ∈ A(x(t)) a.e. on T}

for all
x ∈ D̂ = {x ∈ Lp(T,RN ) : there is g ∈ Lq(T,RN )

satisfying g(t) ∈ A(x(t)) a.e. on T}.

We show that Â is maximal monotone. Let J : Lp(T,RN ) → Lq(T,RN )
be defined by J(x)(·) = ‖x(·)‖p−2x(·). We will show that R(Â + J) =
Lq(T,RN ). To this end, let h ∈ Lq(T,RN ) be given and let

Γ(t) = {(x, a) ∈ RN × RN : a + ϕ(x) = h(t), a ∈ A(x), ‖x‖ ≤ r(t)}

with r(t) = ‖h(t)‖ 1
p−1 + 1. Note that A + ϕ is maximal monotone and so by

Theorem III. 6.28, p. 371, of Hu-Papapgeorgiou [13], we have that Γ(t) 6= ∅
a.e. on T . Moreover,

GrΓ

= {(t, x, a) ∈ T × RN × RN : a + ϕ(x) = h(t), d(a,A(x)) = 0, ‖x‖ ≤ r(t)}
∈ L ×B(RN )×B(RN ), with L being the Lebesgue σ-field of T .

Invoking the Yankov-von Neumann-Aumann selection theorem, we obtain
measurable maps x, a : T → RN such that (x(t), a(t)) ∈ Γ(t) a.e. on T .
Evidently x ∈ Lp(T,RN ) and a ∈ Lq(T,RN ). So R(Â + J) = Lq(T,RN ).
Now we will show that this surjectivity implies the maximality of the mono-
tone operator Â. Indeed suppose y ∈ Lp(T,RN ), v ∈ Lq(T,RN ) and assume
that

(a− v, x− y)pq ≥ 0 for all x ∈ D̂, a ∈ Â(x).

Since R(Â + J) = Lq(T,RN ), we can find x1 ∈ D̂ such that v + J(y) =
a1 + J(x1), a1 ∈ Â(x1). Then (a1 − a1 + J(y) − J(x1), x1 − y)pq ≥ 0 ⇒
(J(y) − J(x1), x1 − y)pq ≥ 0 ⇒ x1 = y ∈ D̂ (since J is strictly monotone)
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and v = a1 ∈ Â(x1) i.e. (y, v) ∈ GrÂ and this proves the maximality of Â.
Let Jλn : RN → RN be the resolvent map. Then for all t ∈ T

‖Jλn(xn(t))− x(t)‖ ≤ ‖Jλn(xn(t))− Jλn(x(t))‖+ ‖Jλn(x(t))− x(t)‖
≤ ‖xn(t)− x(t)‖+ ‖Jλn(x(t))− x(t)‖ → 0 as n →∞.

Recall that Aλn(xn(t)) ∈ A(Jλn(xn(t))) for all t ∈ T . We have

(Jλn(xn(·)), Aλn(xn(·))) ∈ GrÂ

and Jλn(xn) → x in Lp(T,RN ), Âλn(xn) w→ u in Lq(T,RN ). Since Â is
maximal monotone, in the limit we have (x, u) ∈ GrÂ, i.e. u(t) ∈ A(x(t))
a.e. on T . This proves that x ∈ C1(T,RN ) is a solution of (1).

In the same way, using this time Proposition 3, we can have a“nonconvex”
existence theorem.

Theorem 5. If the hypotheses H(A)2,H(F )2 and H(ξ), then problem (1)
has a solution x ∈ C1(T,RN ).

Now we will prove existence theorems for the case when domA 6= RN . As we
have already mentioned, this requires a slightly stronger growth condition.
More precisely, the new hypotheses on F are the following:

H(F )3: F : T×RN×RN → Pkc(RN ) is a multifunction such that hypothesis
H(F )1 (i) – (iv) hold and

(v) for almost all t ∈ T , all x, y ∈ RN and all v ∈ F (t, x, y)

‖v‖ ≤ γ1(t, ‖x‖) + γ2(t, ‖x‖)‖y‖

with sup0≤r≤k γ1(t, r) ≤ η1,k(t) a.e. on T , η1,k ∈ L2(T ) and

sup0≤r≤k γ2(t, r) ≤ η2,k(t) a.e. on T , η2,k ∈ L
2p

p−2 (T ) (as usual r
0 = ∞

for r > 0).

Similarily, we can have the hypothesis of the nonconvex problem.

H(F )4: F : T ×RN ×RN → Pk(RN ) is a multifunction such that hypothesis
H(F )2 (i) – (iv) and H(F )3(v) hold.

Also we will need a compatibility condition between the maps A and ξ.
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H0: for all (a, d) ∈ domξ and all (a′, d′) ∈ ξ(a, d), we have (Aλ(a), a′)RN +
(Aλ(d), d′)RN ≥ 0 for all λ > 0.

Remark. Suppose ξ = ∂ψ with ψ : RN × RN → R convex (hence lo-
cally Lipschitz). Let ∂kψ, k = 1, 2, denote the partial subdifferential of
ψ(·, ·) with respect to the first variable (k = 1) or to the second variable
(k = 2). We know ∂ψ ⊆ ∂1ψ × ∂2ψ. In the case (Aλ(a), a′)RN ≥ 0 and
(Aλ(d), d′)RN ≥ 0 for all (a′, d′) ∈ ξ(a, d), (a, d) ∈ domξ, is equivalent to
saying that ψ(Jλ(a), d) ≤ ψ(a, d), ψ(a, Jλ(d)) ≤ ψ(a, d) respectively (see
Hu-Papageorgiou [13]).

Theorem 6. If hypotheses H(A)1,H(F )3,H(ξ) and H0 hold, then problem
(1) has a solution x ∈ C1(T,RN ).

Proof. As in the proof of Theorem 4, we take λn → 0, λn > 0 and xn ∈
C1(T,RN ) solutions of the auxiliary problems (2). We know that {xn}n≥1 ⊆
W 1,p(T,RN ) is bounded and so we may assume that xn

w→ x in W 1,p(T,R)N .
Keeping the notation introduced in the previous proofs, we have

V (xn) + Âλn(xn) = −fn, fn ∈ NF (xn), n ≥ 1

⇒ (V (xn), Âλn(xn))pq + ‖Âλn(xn)‖2
2 = −(fn, Âλn(xn)pq

(8)

(recall that Âλn(xn) ∈ C(T,RN )). From the definition of V and Green’s
identity, we obtain

(V (xn), Âλn(xn))pq

= −
∫ b

0

((∥∥x′n(t)
∥∥p−2

x′n(t)
)′

, Aλn(xn(t))
)

RN

dt

= −‖x′n(b)‖p−2(x′n(b), Aλn(xn(b)))RN + ‖x′n(0)‖p−2(x′n(0), Aλn(xn(0)))RN

+
∫ b

0

∥∥x′n(t)
∥∥p−2

(
x′n(t),

d

dt
Aλn(xn(t))

)

RN

dt.

We know that Aλn : RN → RN is 1
λn

-Lipschitz and so it is differen-
tiable almost everywhere (Rademacher’s theorem). Also Aλn is monotone.
Exploiting the monotonicity, we have for every x ∈ RN being point of
differentiability of A
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(
y,

Aλn(x + ty)−Aλn(x)
t

)

RN

≥ 0

for all t ≥ 0 and all y ∈ RN and hence (y,A′λn
(x)y)RN ≥ 0.

From the chain rule of Marcus-Mizel [16] (Theorem 4.1), we know that

d

dt
Aλn(xn(t)) = A′λn

(xn(t))x′n(t) a.e. on T.

Using hypothesis H0, we have

(V (xn), Âλn(xn))pq ≥
∫ b

0

∥∥x′n(t)
∥∥p−2 (

x′n(t), A′λn
(xn(t))x′n(t)

)
RN dt ≥ 0.

Using this in (8), we obtain

‖Âλn(xn)‖2
2 ≤ ‖fn‖2‖Âλn(xn)‖2

and thus {Âλn(xn)}n≥1 ⊆ L2(T,RN ) is bounded. So we may assume that
Âλn(xn) w→ u in L2(T,RN ). Moreover, as in the proof of Theorem 4, we
can have xn → x in W 1,p(T,RN ) and ‖x′n(·)‖p−2x′n(·) w→ ‖x′(·)‖p−2x′(·) in
W 1,q(T,RN ), while fn

w→ f in L2(T,RN ) (see hypothesis H(F )3 (v)). In the
limit we have f ∈ NF (x) and

{ (‖x′(t)‖p−2x′(t)
)′ ∈ u(t) + f(t, x(t), x′(t)) a.e. on T

(ϕ(x′(0)),−ϕ(x′(b))) ∈ ξ(x(0), x(b)).

}

As before to finish the proof, we need to show that u(t) ∈ A(u(t)) a.e. on
T . For this purpose, let Jλ : RN → RN , λ > 0, be there solvent of A and
Ĵλ : Lp(T,RN ) → Lp(T,RN ) be defined by Jλ(x)(·) = Jλ(x(·)). Since Jλ is
nonexpansive, from Marcus-Mizel [16] we have that Ĵλ(xn) ∈ W 1,p(T,RN )
and d

dtJλn(xn(t)) = J ′λn
(xn(t))x′n(t) (chain rule) and ‖J ′λn

(xn(t))‖ ≤ 1.
So ‖J ′λn

(xn(t))x′n(t)‖ ≤ ‖x′n(t)‖ a.e. on T , from which it follows that
{Ĵλn(xn)}n≥1 ⊆ W 1,p(T,RN ) is bounded. Thus we may assume that
Ĵλn(xn) w→ v in W 1,p(T,RN ), Ĵλn(xn) → v in Lp(T,RN ). From the def-
inition of the Yosida approximation Aλn = 1

λn
(I − Jλn), we have

Jλn(xn(t)) + λnAλn(xn(t)) = xn(t)

⇒ Ĵλn(xn) + λnÂλn(xn) = xn.
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Recall that {Âλn(xn)}n≥1 ⊆ L2(T,RN ) is bounded and λn → 0. Moreover,
Ĵλn(xn) → v and xn → x in Lp(T,RN ), hence in L2(T,RN ), too (since
2 ≤ p). So passing to the limit in the last inequality, we obtain v = x.
Hence Ĵλn(xn) w→ x in W 1,p(T,RN ) and Ĵλn(xn) → x in C(T,RN ). Let

S = {t ∈ T : there exists (y, w) ∈ GrA such that (u(t)−w, x(t)−y)RN < 0}.

If we can show that |S| = 0 (i.e. S is a Lebesgue-null), then by virtue of
the maximal monotonicity of A(·), we will have that u(t) ∈ A(u(t)) a.e. on
T . Let Γ(t) = {(y, w) ∈ GrA : (u(t) − w, x(t) − y)RN < 0}. Evidently
S = {t ∈ T : Γ(t) 6= ∅}. Also GrΓ = (T × GrA) ∩ {(t, y, w) ∈ T × RN ×
RN : ξ(t, y, w) < 0}, where ξ(t, y, w) = (u(t) − w, x(t) − y)RN . Clearly,
t 7→ ξ(t, y, w) is measurable and (y, w) 7→ ξ(t, y, w) is continuous. Hence
ξ is jointly measurable and so GrΓ ∈ L × B(RN ) × B(RN ), with L being
the Lebesgue σ-field of T . Invoking the Yankov-von Neumann- Aumann
projection theorem (see Hu-Papageorgiou [13], Theorem II. 1.33, p. 149), we
have projT GrΓ = {t ∈ T : Γ(t) 6= ∅} = S ∈ L. If |S| > 0, by the Yankov-von
Neumann-Aumann selection theorem (see Hu-Papageorgiou [13], Theorem
II. 2.14, p. 158), we obtain y : S → RN , w : S → RN measurable functions
such that (y(t), w(t)) ∈ Γ(t) for all t ∈ T . From Lusin’s theorem, we know
that we can find S1 ⊆ S closed, with |S1| > 0 such that y|S1 , w|S1 are both
continuous, hence bounded. Since Aλn(xn(t)) ∈ A(Jλn(xn(t))), we have

(Aλn(xn(t))− w(t), Jλn(xn(t))− y(t))RN ≥ 0

⇒
∫

S1

(Aλn (xn(t))− w(t), Jλn (xn(t))− y(t))RN dt ≥ 0

⇒
∫

S1

(u(t)− w(t), x(t)− y(t))RN dt ≥ 0.

On the other hand, since (y(t), w(t)) ∈ Γ(t) for all t ∈ S and |S1| > 0, we
have ∫

S1

(u(t)− w(t), x(t)− y(t))RN dt < 0,

a contradiction. Therefore |S| = 0 and so we conclude that u(t) ∈ A(x(t))
a.e. on T . This shows that x ∈ C1(T,RN ) is a solution of (1).

As for Theorem 4, we can have the “nonconvex” counterpart of
Theorem 6.
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Theorem 7. If the hypothesis H(A)1,H(F )4,H(ξ) and H0 hold, then
problem (1) has a solution x ∈ C1(T,RN ).

5. Special cases

(a) Let K1,K2 ⊆ RN be nonempty, closed, convex and 0 ∈ K1 ∩ K2. Let
δK1×K2 be the indicator function of K1 ×K2, i.e.

δK1×K2(x, y) =

{
0 if (x, y) ∈ K1 ×K2

+∞ otherwise.

Then ∂δK1×K2 = NK1×K2 = NK1 ×NK2 (here if C ⊆ RN by NC we denote
the normal cone to C). Set ξ = ∂δK1×K2 . Problem (1) takes the form





(‖x′(t)‖p−2x′(t)
)′ ∈ A(x(t)) + F (t, x(t), x′(t))

x(0) ∈ K1, x(b) ∈ K2

(x′(0), x(0))RN = σ(x′(0),K1)

(−x′(b), x(b))RN = σ(−x′(b),K2),





(9)

where for C ⊆ RN , σ(x∗, C) = sup[(x∗, c)RN : c ∈ C] = the support function
of C. Note that ξ is maximal monotone and because 0 ∈ K1 ∩K2, (0, 0) ∈
ξ(0, 0) and for (a′, d′) ∈ NK1(a) × NK2(d) we have (a′, a)RN ≥ 0, (d′, d)RN

≥ 0. So H(ξ) is valid and the results of this paper apply to problem (9).
If K1,K2 ⊆ RN

+ , ψ = δRN
+

and

A(x) = ∂ψ(x) = NRN
+

(x)

=

{ {0} if xk > 0 for all k ∈ 1, . . . , N

−RN
+ ∩ {x}⊥ if xk = 0 for at least one k ∈ 1, . . . , N

(x = (xk)N
k=1). We can check that Aλ(x) = 1

λ(x − p(x;RN
+ )), with p(·;RN

+ )
being the metric projection on RN

+ . For x ∈ K1 or x ∈ K2, p(x;RN
+ ) = x

and so Aλ(x) = 0, which means that H0 holds. Problem (1) becomes
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



(‖x′(t)‖p−2x′(t)
)′ ∈ F (t, x(t), x′(t)) a.e. on

{t ∈ T : xk(t) > 0 for all k ∈ 1, . . . , N}
(‖x′(t)‖p−2x′(t)

)′ ∈ F (t, x(t), x′(t))− u(t) a.e. on

{t ∈ T : xk(t) = 0 for some k ∈ 1, . . . , N}
x(t) ∈ RN

+ for all t ∈ T , x(0) ∈ K1, x(b) ∈ K2,

(x(t), u(t))RN = 0, u(t) ∈ RN
+

(x′(0), x(0))RN = σ(x′(0),K1), (−x′(b), x(b))RN =σ(−x′(b),K2).





(10)

The results of the paper apply to the multivalued variational inclusion (10).
(b) If K1 = K2 = {0}, then NK1 = NK2 = RN and so there are no

constraints on x′(0) and x′(b). Therefore problem (1) becomes the classical
Dirichlet problem. Since Aλ(0) = 0, hypothesis H0 holds and the results of
this work apply.

(c) If K1 = K2 = RN , then NK1 = NK2 = {0} and so there are no
constraints on x(0) and x(b), while x′(0) = x′(b) = 0. Thus problem (1)
becomes the classical Neumann problem. In this case (H0) is trivially true
and our results apply.

(d) If K = {(x, y) ∈ RN × RN : x = y} and

ξ = ∂δK = K⊥ = {(v, w) ∈ RN × RN : v = −w},

then problem (1) becomes the periodic problem. In this case we satisfy H(ξ)
(ii) and (Aλ(a), a′)RN + (Aλ(d), d′)RN = 0, i.e. H0 is true. So our results
incorporate the periodic problem.

(e) Let ξ : RN × RN → RN × RN be defined by ξ(x, y) = ( 1
ϑp−1 ϕ(x),

1
ηp−1 ϕ(y)), ϑ, η > 0, then from (1) we obtain a Sturm-Louville type problem
with x(0)− ϑx′(0) = 0 and x(b) + ηx′(b) = 0. It is easy to see that H(ξ) (i)
and H0 hold and so our results apply.
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