Discussiones Mathematicae
Differential Inclusions, Control and Optimization 21(2001) 97-126

OPTIMAL CONTROL OF co-DIMENSIONAL
STOCHASTIC SYSTEMS VIA GENERALIZED
SOLUTIONS OF HJB EQUATIONS

N.U. AHMED

Department of Mathematics
University of Ottawa

Ottawa, Canada, KIN6N5

Abstract

In this paper, we consider optimal feedback control for stochastc
infinite dimensional systems. We present some new results on the
solution of associated HJB equations in infinite dimensional Hilbert
spaces. In the process, we have also developed some new mathematical
tools involving distributions on Hilbert spaces which may have many
other interesting applications in other fields. We conclude with an
application to optimal stationary feedback control.
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1. Introduction

We consider the following system governed by a controlled stochastic
differential equation as described below:

dz = Azdt + F(z)dt + B(z)udt + /QdW, t > 0,

1.1
(1) 2(0) = =.

Let H and U be any two Hilbert spaces, the first denoting the state space
and the other the space of controls. Generally, A is an unbounded operator
with domain and range in H, F' is a nonlinear operator in H and B is a
nonlinear map from H to the space of bounded linear operators from U
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to H. The map @ is a bounded symmetric positive operator in H and W is
a cylindrical Brownian motion in H. Let U,4 denote the class of admissible
control policies. Precise hypothesis will be introduced shortly. This paper is
motivated by the following problem. Find a control u® € U,y that minimizes
over the time interval I = [0, 7], the expected (average) cost functional

(1.2) J(u) = E{/{)T[g(t, 2(t)) + h(u(t))ldt + soo(Z(T))},

where g, h and ¢q are suitable real valued functions defined on I x H, U, and
H respectively. Two basic questions arising in control theory are existence
of optimal control policies and necessary conditions that optimal policies
must satisfy. Formally for a fully observed problem as stated above, the
solution to both the problems are provided by the solution of the so called
Hamilton-Jacobi-Bellman (HJB) equation. To use the dynamic program-
ming principle, one introduces the value function

(1.3) V(t,z) = Inf{J(t, z,u),u € Uy},

where

It = B[ 1000,600(0)) + (9106 + e}

and & , is the solution of equation (1.1) starting from time ¢t € I and € H.
In other words & . is the solution of

dy(s) = (Ay(s) + F(y(s)) + B(y(s))u(s))ds + VQdW (s), s > ¢,
y(t) ==

Let B, C U denote the closed ball in U of radius » > 0, centered at the
origin. For admissible open loop controls, denoted by U?;, we take the class
of all progressively measurable random processes {u(t),t > 0}, taking values
from B,. For admissible feedback controls, denoted by U/S,;, we take all Borel
measurable maps from H to B,. For arbitrary x € H and q € B*(x)H C U
and u € B, define L(z,q,u) = (u,q) + h(u) and the Hamiltonian

(1.4) H(z,q) = inf{L(z,q,u),u € B,}.

Then by use of dynamic programming principle one can formally derive the
following partial differential equation for the value function V,

2V (t,z) + (AV)(t,z) + Fu(V)(t, 2) + Fo(V)(t, z) + g(t, z) = 0,

(1.5)
tel0,7), x € H, V(T,z) = po(z), v € H,
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where the operators Ay, F; and F» are given by

Ao(z) = (1/2)Tr(QD*(2)) + (A* Dy (), z),
(1.6) Fi()(x) = (F(x), DY (x))u,
Fa(¥)(x) = H(x, B*(x)Dip(x)),

with Dy, k € N, denoting the Frechet differential of ¢ of order k. Solving
this equation one expects to obtain the value (the optimal cost)

(1.7) J°=V(0,z)

of the control problem as stated. If the initial state is an H valued random
variable with associated measure, say, 1y then it is given by

(1.8) Jo = / V (0, 2)vo(dz).
H
The optimal feedback control law is given by
(1.9) u*(t,z) = Hy(z, B*(x)DV (t, z)),

where H, denotes the Frechet derivative of H(x,q) with respect to the vari-
able ¢ € U. In general, HJB equation does not have a classical solution even
when dim H < oco. In any case, if a solution exists which is C' in ¢t € I and
C? in x € H, then the optimal cost is given by (1.7) or (1.8) and the optimal
control is given by u°(t) = u*(t, 2°(t)) where z° is the solution of equation
(1.1) corresponding to the control u°.

For infinite horizon problem or stationary problem, the objective func-
tional is given by the discounted cost

(1.10) J(u,2) = E { /O T e (1)) + h(u(t))]dt} ,

for a suitable positive number § known as the discount factor. Here z =
z(t,x) is the solution of (1.1) corresponding to the control u and initial
state z(0) = x. The value function is defined by

V(z) = inf{J(u,x),u € Upq}.
In this case one has the stationary HJB equation

(1.11) 5(I>:Aoq>+f1(<1>)+f2((1>)+g(x),x € H.
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If this equation has a solution, formally the optimal cost is given by V(z) =
®(x) and the optimal feedback control law is given by

u'(z) = Hy(z, B (2) D®(z))

and the optimal control u°(t) = w*(z(t)) where again z(t),t > 0, is the
solution of equation (1.1) corresponding to the control u® and the initial
state z(0) = x.

By reversing the flow of time, that is, setting ¢t — T —t one can rewrite
the equation (1.5) as

0 ~
7()0( ,.Cl?) :A0¢+F1(90)+F2(90)+g(t7x) =0,t € (O,T],.TUEH,

(1.12) ot
go(o,.%‘) = 900('%')7 x€H,

where g(t,x) = g(T — t,z). Our primary concern is to prove the existence
of solution of the HJB equation (1.12) and the stationary problem (1.11)
in some generalized sense. In recent years this problem has been consid-
ered intensively by many notable workers in the field, specially Da Prato
[2], Gozzi and Rouy [1], Goldys and Maslowski [3]. These are fully ob-
served control problems treated using purely analytic techniques. Partially
observed control problems based on filter theory [12] have been treated in
[8, 9, 10] using stochastic and analytic techniques. Gozzi and Rouy treated
the stationary HJB equation (1.11) in [1]. They used differentiability prop-
erty of the Ornstein-Uhlenbeck semigroup Ry, t > 0, and its weak continuity
in the sense of Cerrai [7] and formulated a fixed point problem in the form

(113) Vi) = [T TRAFVI@) + FaV)(a) + gl

in the Banach space BUC'(H), the space of bounded uniformly continuous
and once Frechet differentiable functions. This is equivalent to the question
of existence of a fixed point in BUC!(H) of the operator R(6, Ag)G, or the
functional equation,

(1.14) V =R(5,A0)G4(V),

where

Gy(V)=FRAV)+FR(V)+yg

and R(d,.Ap) denotes the resolvent of the semigroup R;,t > 0, with Ay being
its weak infinitesimal generator. They used Banach fixed point theorem to
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prove the existence and uniqueness of solution to this problem. This was
proved under the assumptions that F' is Lipschitz continuous and bounded
uniformly on H. Goldys and Maslowski [3] used similar techniques to ex-
tend these results to the case where F' is merely Lipschitz and proved the
existence of solutions in weighted BUC), spaces whose elements are uni-
formly continuous with atmost polynomial growth of order 2m. Da Prato
[2] used perturbation theory of semigroups and logarithmic transform to
prove the existence of solution of the HJB equation for a linear system with
quadratic cost in control and subquadratic cost in state. By use of the well
known logarithmic transform, the nonlinear problem is transformed into
a linear (parabolic) problem with a potential. The perturbed operator is
shown to be selfadjoint and dissipative generating a positivity preserving Cy
semigroup of contractions on H (see Section 4, Proposition 4.1) giving an ex-
plicit representation of the value function. Our approach is based on bilinear
forms and coercivity of Ornstein-Uhlenbeck operator involving the Gelfand
triple (V — H < V*) (see Section 4, Proposition 4.1). We use standard
fixed point theorems to prove existence and regularity properties of gener-
alized solutions of HJB equations and finally use a theorem on measurable
selections for existence of optimal feedback controls.

The rest of the paper is organized as follows: In Section 2, basic nota-
tions are introduced; in Section 3, basic assumptions and some fundamental
results of independent interest are presented following Da Prato [2]. In
Section 4, we study Ornstein-Uhlenbeck operator in Sobolev spaces and
their duals introduced in this paper. In Section 5, we present existence,
uniqueness and regularity properties of generalized solutions for an abstract
version of the HJB equation which are then applied to the HJB equation
(1.12). In the final section, we conclude the paper with a result on the
stationary control problem.

2. Basic notations

Let H be a separable Hilbert space with the norm and inner product denoted
by |-|,(-,-). Let Cy(H)(By(H)) be the vector space of bounded continuous
(bounded Borel measurable) functions on H with the topology induced by
the norm

IS llo= sup{|f(z)|,x € H}.

With respect to this norm topology these are Banach spaces. We let
BUC(H) denote the space of bounded uniformly continuous functions on
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H to R with the same supnorm topology as above. With this topol-
ogy, BUC(H) is also a Banach space. For any Banach space X with
dual X* the duality pairing of y € X* and ¢ € X is denoted by
<y,r >x-x=<z,y >x x- . For any pair of Banach spaces X,Y, L(X,Y)
will denote the space of bounded linear operators from X to Y. For Y = X,
L(X,X) = L(X). For any Banach space X, Bx denotes the Borel sigma
algebra of subsets of the set X and (X, Bx) the measurable space.

3. Basic assumptions and some preperatory
results

For the study of the HJB equation (1.12) or its stationary version (1.11)
we shall make use of the Ornstein-Uhlenbeck Semigroup associated with
the Markov transition operator corresponding to the stochastic evolution
equation:

dz = Azdt + /QdW,

3.1
(31) 2(0) ==z,

where A is the infinitesimal generator of a Cp-semigroup S(t),t > 0, in a
separable Hilbert space H, W is an H-cylindrical Brownian motion on some
probability space (€2, F, P) and @ is a bounded positive selfadjoint operator
in H. For any bounded Borel measurable function ¢, that is, ¢ € By(H),
one defines

(3.2) Rig(z) = E{o(2(t,2))) = /H P(2)N(S(t)z, Qr)(dz),t > 0,

where E denotes the expectation and N (S(t)z, Q;)(dz) is the Gaussian mea-
sure induced by z(t,x) with mean S(¢)z and covariance @ given by

(3.3) Q; = /Ot S(0)QS*(0)d0, t > 0.

One can verify that Rg = I, Ry+s = Ry Rs,t, s > 0. Clearly, it is a contraction
on By(H) and that it is positivity preserving in the sense that ¢(z) > 0
implies that (R;¢)(x) > 0, however it is not a strongly continuous semigroup
on By(H) or Cy(H). It is, however, a weakly continuous semi group on
BUC(H) as illustrated in an interesting paper by Cerrai [7]. This semigroup
is well known as the Ornstein-Uhlenbeck semigroup; see for details [5, 6].
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In a recent paper by Da Prato and Zabczyk [4], see also [5], it was shown
that by weakening the topology, or more precisely, using a larger space
with a weaker topology one can obtain a strongly continuous semigroup by
extension while preserving contraction and positivity properties. Our study
of the HJB equation is based on this strongly continuous semigroup. For
this purpose we must introduce some basic assumptions:

(H1): A is the infinitesimal generator of a Cy-semigroup, S(t), ¢t > 0, in H
satisfying

1S() o< Me™t> 0,0 >0,M > 1.

(H2): @ is a positive, symmetric, bounded operator in H so that the oper-
ator @; given by (3.3) is nuclear for all ¢ > 0 and Sup;>TrQ: < co.

(H3): W is a cylindrical Wiener process in H with CovW (1) = I.

(H4): ImS(t) C ImQ;/2 and the operator valued function I'(t) =
~125(¢ , t >0, is Laplace transformable.
t

Remarks. It may be interesting to make some comments on the hypotheses
(H1) — (H4). A sufficient condition for the assumption (H2) to hold is that
() has finite trace. This follows from the estimate

TrQs < (M2/2w)TrQ

which is easily verified by direct computation. Alternatively, (H2) holds if @
is merely a bounded positive operator in H and the semigroup S(t), t > 0, is
Hilbert-Schmidt. This assumption guarantees the existence of an invariant
measure for the Markov semigroup R:,t > 0, corresponding to the linear
system (3.1). Hypothesis (H4) is equivalent to the null controllability [6] of
the deterministic system

&= Az +/Q u,t >0,

where u denotes the control. This condition guarantees strong Feller prop-
erty for the Markov semigroup R;,t > 0, [5, Theorem 7.2.1] and this, in
turn, guarantees uniqueness of invariant measure whenever it exists. The
existence and uniqueness of an invariant measure are crucial in our study of
the HJB equation.

Under the hypothesis (H1 — H4), the process z given by the (mild) solution of
equation (3.1) has a unique invariant measure p which is Gaussian, that is,
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p(-) = N(0, Qoo )(+), with mean zero and covariance Q. Using this invariant
measure one can construct the following Hilbert and Sobolev spaces.

Let D¢ and D?¢ denote the first and the second Frechet derivatives of
the function ¢ : H — R, whenever they exist as elements of H and L£(H)
respectively. Let Lo(H, ) denote the equivalence classes of real valued func-
tions on H which are square integrable with respect to the invariant measure
. Furnished with the natural scalar product and the associated norm, it is
a Hilbert space. Let Wh2(H, ) and W22(H, i) denote the Sobolev spaces
furnished with the norm topologies

1/2
|6 lwrzgar = (16 1z + | V@DS I 41,0
) 5. 1o (1/2)
I 6 lweeqs = (10 ean + [ 1QD% s nidn)

Using Schwartz inequality, it follows from (3.2) that
(Reg) (2)[* < (Ri¢*)(x) Y € By(H).

Integrating this with respect to the invariant measure p we have

| IRiéPu(dz)
< [ Ri@ulde) =< 6%, Rip >=< ¢ >= [ ¢*@)uldo).
H H

Since Bp(H) is dense in Lo(H, u) it follows from this inequality that the
semigroup R; can be extended from By(H) to Lo(H, p) while preserving the
contraction property. We shall denote this extension by the same symbol
Ry, t > 0. Clearly, on this space { Ry, t > 0} is a strongly continuous contrac-
tion semigroup. Its infinitesimal generator is given by C = Ay, the closure
of Ap in Lo(H, ). The following result is well known [see 4, 5].

Proposition 3.1. Suppose the assumptions (H1) — (H4) hold. Then the
operator C generates a Cy-semigroup of contractions, Ry, t > 0, in Lo(H, 1)
and it is the extension of the original Markov transition operator from By(H )
to Lo(H, p). Further D(C) € WY2(H,u) and for t > 0, Ry is a family of
compact operators in Lo(H, ).

Proof. See Da Prato-Zabczyk [4, 5].
Unless otherwise stated, throughout the rest of the paper the assumptions
(H1) — (H4) remain in force even though they are not stated explictly.
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We start with the following integration by parts formula. See also Da
Prato [2].

Proposition 3.2. For each ¢, € WY2(H, i) and e € H the following
identity holds.

34) [ (D, Que)t + (D, Que)pbuldn) = [ olw)i(a) . e)u(dz).

Proof. The proof essentially follows from Cameron-Martin-Girsanov for-
mula. For h € H, let py,(dz) denote the shift of the measure p. Since p is a
centered Gaussian measure we have yuy(dz) = N(h, Qo) (dz) = pp(2)u(dz)
where

(3:5) pn(z) = exp{(Qh, 2) = (1/2)(Q by 1)}
It is clear from this expression that all shifts in the direction Im(Qo) C H

are admissible. Thus for admissible shifts, uj is absolutely continuous with
respect to the measure u. Hence for any e € H we have

| (Do, Quee)itdo)
= lim(1/) [ {pl + Quce) — 6(e) bi(a) ()
e— H

3.0) =lm1/o{ [ o0 - Queno..lds) - [

H

P Eldz) |
= lim(1/¢) { /H o(2) <¢(z — €Qo0)PeQue(2) — w(z))u(dz)}
= [ (D Que)e nd) + [ e)(:)(e.2) u(d).

This is (3.4). |

Let {\;,e;} and {gi,e;} be the set of eigen values and eigen vectors for
the covariance operators Qo and @ respectively and suppose that {e;} is
orthonormal in H forming a basis for H.

Proposition 3.3. Suppose v = Y (\i/q;)> < oo. Then for any 1 €
WY2(H, pn), © — |z|p(x) belongs to Lo(H, ) and there exists a constant
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C > 0 such that
/H | |? | |? u(de)
<C {/H [P u(dr) + /H I\/@D¢2M(dx)} = C 19 3o

for all p € WY2(H, i), where C = 2T7(Qs) + 47 || VQ ||? .

Proof. Taking ¢(x) = ¢(x)(x,e) and substituting in the expression (3.4)
we have

[ @@ 0uld)
= [ 0A@)(e. Quen(da) +2 [ (Db, Que)b(a)(a,c)u(da).

Using Cauchy inequality applied to the second term on the right hand side
we obtain

[ A @)@ ePutdr) < 2(e.Quee) [ v*@)pldn) +4 [ (DY, Que)uldr).
H H

Then taking e = e; and summing over all ¢ > 1, it follows from the preceding
inequality that

[ P@lafu(d)
< 270(Qu) [ WHa)ulda) +4Y [ (D, (h/a)Qe:)*u(da)

i>1

< 2T (Qno) /H V(@) pldr) + 43 N/ ai)? /H (DY, Qer)u(d).

i>1
The estimate (3.7) follows immediately from this inequality. |

Remark. Note that if {¢; = 1,7 > 1} then @ is the identity opera-
tor and in this case the assumption, v < oo, is trivially satisfied. This
follows from the simple fact that Qo is a bounded positive nuclear op-
erator (assumption (H2)) and hence Hilbert-Schmidt. In fact, we have
| Qoo 13 5< || Qo || TrQoo. Further the assumption, v < oo, implies
that the injection W2(H, u) < Lo(H, j1) is compact.

Corollary 3.4. For every ¢ € W22(H,u), * — |z|?>¢(z) belongs to
LQ(H,,LL).
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Proof. Since ¢ € W*2(H, ) ¢ WYH2(H, u) it follows from the Proposi-
tion 3.3 that
z — |z|o(x)

belongs to Lo(H, p). Thus it suffices to verify that x — |z|¢(z) actually
belongs to W12(H, 11). But this follows immediately from the fact that each
of the terms in the following expression

D(|z|¢(x)) = |z|Do(x) + (x/]x])¢
belongs to Lo(H, p). |

Proposition 3.5. For each ® € W?2(H, 1) there exists a positive constant
C1 such that

(33 | el ' e @n(dz) < € | @ [fraay -

Proof. Here we give only an outline of the proof. Using the identity (3.4)
with ¢ = (2,6;)®(x) and ¢ = (z,¢;)?®(x) and then summing over the
indices {i, 7}, we obtain

39 [ ol @n(de) <4 [ (QuD®,2)u(de) + 5 [ 8%ol*u(da)

where =2 || Qw || +T7Qo. Dealing with the first term of (3.9) we have
[ (@xD%.2ud)
H
=Y | (VD0 (VQui i) plde)

1>1

(3.10) = Z()\i/qz')z/ (VQD®, ¢;)*(VQu, e;)’ u(dx)

i>1 H

<IVR I [, VQDO Rl p(da)
<IVQIFYY [ (VaD@,e)?lafu(da).

i>1
Using the estimate (3.7) for ¢ = (/QD®, e;) we have
> | (VOD®,e)lafu(dr)

(3.11) =l

SC(/HI\/@D@PM(dx)JF/H I \/@D2<I>(3:)\/@H§I.S u(dx)).
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Similarly, using the estimate (3.7) for ) = ® the second term of (3.9) gives

312) 5 [ ¥@)aPu(d) < 50{ [ @utdn) + [ 1V@DIL (o)},

Using (3.10) — (3.12) into (3.9), the inequality (3.8) follows, where the con-
stant Cy can be taken as

Cr= (2] Qo || +TrQue +4 || V@ |* 7)C. n

4. Distributions and Ornstein-Uhlenbeck
operator

Here, first we consider the Ornstein-Uhlenbeck operator Ay given by

(4.1) (Aop)(x) = (1/2)Tr((QD%p)(2)) + (A" Dy(), z).

We show that, associated to this formal differential operator, there exists a
bilinear form on the Sobolev space W1?(H, ;1) and hence a bounded linear
operator from this space to its dual which is characterized here. Let £4(H)
denote the class of exponential functions of the form

ExH)={¢: ¢(z) = Re(f: ap €0 2 € D(A*),a, € C,m € N}.
k=1

It is clear that £4(H) is dense in all of the spaces W22(H, ), WY2(H, 1),
Lo(H, p) and that E4(H) C D(Ap). A non unique characterization of the
dual of the Hilbert space WY2(H, ) is given as follows. Let ¢g, 1 €
Lo(H, 1) and define

(4.2) 0(z) = appo(z) + a1(Dy1(z), Quce),x € H,

for any e € H and ag,a; € R, where D denotes the Frechet derivative in
some generalized sense to be clarified shortly. Define

43) )= [ apebuld) + [ a(DerQuein(ds).

We verify that ¢y defines a continuous linear functional on W2(H, ).
Since ¢o € Lo(H,u) and ¢ € WV2(H, 1), the first integral is well defined.
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For the second term, using Cameron-Martin formula we have

/H a1(Dp1, Qooe)op(dz)
(44) = /H 1) {—a1 (DY), Qooe) + a1t (x)(z, €) bl d)
- /H o1(2){—a1(VQDY(x), QY2 Qo) + a1t (x)(z, €) b de).

One can easily verify that

| Q7 Qoo IS /7 1 Q|-

Since ¢ € WY2(H, p), it follows from this that the first term within the
braces belongs to Lo(H, pu) and by proposition 3.3 the second term also be-
longs to La(H, pt). This implies that the last integral in (4.3) is well defined
for any 1 € Lo(H, 1) and hence every 6 of the form (4.2) induces a contin-
uous linear functional £p on WH2(H, p). Thus 6 € (W2(H, p1))*. Similarly,
we can define the dual of W22(H, 1). An element of the form

9(33) = a0¢0($) + al(D¢1(‘r)7 Qooe) + a2(D2¢2<$)Qoof7 Qoog>
=0y + 61 + 0.

for arbitrary {¢g,¢1,¢2} € Lo(H,p), {e, f,g} € H and {ag,a1,a2} € R
defines a continuous linear functional on W%2(H, ). It suffices to justify
this for the last component 6. Define

(4.5)

{0, (0) = a2 [ (D*62Qucf, Qug)ibp(de).
By similar computation one can easily verify that
() = a2 [ (D620t Qug)t(da)
= a2 [ {~(D62. Qo) (D6, Quxg) + (D Qo) g:)1 )
(16) = ar [ 02{(D*Quct. Queg) ~ (D Queg) (. ) ()
~ a2 [ 62{(D. Qe f)(2,9) + (Qoeg. )} (o)
+az [ 02 (o, )@ g)u(do).
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Since ¢ € W22(H, 1) the first term of the last expression within the braces
belongs to Lo(H, u); by Proposition 3.3, the second and the third terms
within the braces also belong to Lo(H, ). Clearly, the fourth term within
the brace belongs to Lo(H, 1) and by virtue of the Proposition 3.5, the map
x — P(x)(z, f)(z, g) belongs to La(H, p). Thus ¢y, is a continuous linear
functional on W22(H, 1) and consequently corresponding to each 6 given
by (4.5), £y induces a continuous linear functional on W?22(H, 1) and hence
0 € (W*2(H, u))*. In line with the finite dimensional cases we may denote
this dual by W~22(H, u). With respect to the topology induced by the norm
defined by

1160 1|1= sup{lo (), [| ¥ llw22(m,my= 1}

it is a Banach space. In general, using the Banach spaces L,(H,u), 1 < p
< 00, we can prove the following general result.

Proposition 4.1. For 1 < p,q < oo, satisfying 1/p+1/q =1, and for any
m € N, the dual of W™P(H, ) denoted by W~""9(H, 1) is a Banach space.
The “negative” norm of any element 0 € W~"9(H, 1) is given by

10 lw—m.a(rr,uy=sup{lo(¥), 1 € W™P(H, p), | 4 lwms =1}

As in the Lo case, an element 6 of the form
0(23) = Z ak(Dk(ZSk)(x)(Qoogh Qoo.927 B Qoogk>
k=0

for {ay € R, ¢ € Ly(H,p),0 < k < m} induces a continuous linear func-
tional on W™P(H, 1) where (D*¢p)(z)(h1, ha,- - -, hx) is a multilinear (k-
linear) form on H for p almost all xz € H.

For convenience of notation, we set Lo(H,p) = H and WVY2(H, ) =V
and let V* = W~L2(H, ;1) denote the dual of V. Identifying H with its own
dual we have the so called Gelfand triple

Y H— V¥,

with continuous and dense embeddings. Recall that we used < £, 7 >y« to
denote the duality pairing of £ € V* and n € V. In case £ € Hand n €V, it
is clear that

< 5777 >V*,V: (5777)7'[
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Now define the bilinear form
(4.7) a(6,0) = (1/2) [ (VQD, V@DV

Lemma 4.2. The Ornstein-Uhlenbeck operator Ay satisfies the following
identity

] (Aod) ¥ nlde) = ~(1/2) [ (VQDs, QDY)

(4.8)
- /H 6 (Aot) pulde),

for all ¢, € D(Ap). Further, there exists a unique (linear) operator A €
L(V,V*) such that the bilinear form has the representation

(49) a(ﬁbﬂﬁ) =—-< Aﬁbﬂﬂ >V*,V: —< ¢7A¢ >V,V*: a(% ¢)

for all ¢,9p € V, and —A is coercive. The part of A in H denoted by
Ay coincides with the infinitesimal generator C of the Ornstein- Uhlenbeck
semigroup Ry, t > 0, in H.

Proof. The first statement concerning the identity (4.8) follows from the in-
tegration by parts formula (3.4) and the Lyapunov equation AQsc+QocA* =
—(@. For the second statement we consider the bilinear form

(4.10) a(6, ) = (1/2) / (V@Dy, QDY)

Clearly, it follows from the following inequality

1/2

w0l =) [ vaperuan) ([ |vapuuae)
< (1/2) 16 IVl v,

that it is a continuous map from V x V to R. It is evident from this that for
any fixed ¢ € V, the map

¥ — ag(¥) = a9, ¥)

is a continuous linear functional on V. Hence by Riesz theorem, there exists
a unique 7 = 74 € V* such that

(4.12) a¢(¢) =<1, >y« forall P € V.
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Consequently, there exists a unique continuous linear map A from V to V*
such that 7y, = —A¢. The same statement is valid if the roles of ¢ and 1
are interchanged. Thus the bilinear form a has the characterization

(4.13) a(p, V) =< —Ap, Y >= — < ¢, AY >= a1, p).

Further, the coercivity follows from the following inequality,

(4.14) a(d,0)+(1/2) [ o 7= 1/2) o3 -

The part of A in H, denoted by Ay, is a closed densely defined linear
operator in H. By use of Lax-Milgram theorem one can show that Az is m-
dissipative, hence it follows from Lumer-Phillips theorem that it generates
a unique Cp-semigroup in H. The coincidence of Ay with C follows from
uniqueness of the semigroup R;,t > 0, they generate. This completes the
proof. [

5. Generalized solution on finite time horizon

Throughout the remainder of this paper we assume, without further notice,
that the basic hypotheses of Section 3 remain in force. Before we consider
the HIB equation (1.5), or equivalently, (1.12), we treat an abstract version
of this with reference to the Gelfand triple V <— H — V*. First we consider
the linear problem:

dy/dt = Ay + f(t),t >0

5.1
o) y(0) = wo.

The following result is important in our study of the HJB equation. For
each t > 0, let I; = [0,t] denote the closed interval and set I = Iy for T
finite.

Introduce the vector spaces W, = {¢ : ¢ € La(I, V), ¢ € Lo(I, V*)}.
Furnished with the norm topology,

(5.2) lelw = e B + 18 B,

this is a Hilbert space. Further, it is well known that the embedding W; —
C(I;,H) is continuous. Strictly speaking, the inclusion is understood in the
sense that every element ¢ € W; has a continuous modification with values
in ‘H. We write Wp = W.
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Lemma 5.1. For every yo € H and f € Lao(1,V*), the evolution equation
(5.1) has a unique solution y € Loo(I, H)NLo(I,V). The solution y is differ-
entiable in the sense of V*-valued distributions and y € Lo(I,V*), and hence
y € W. Further {yo, f} — vy is a continuous linear map from H x Lo(I, V")
to W. In fact, it is Lipschitz and there exists a (Lipschitz) constant C' > 0
such that

I v1 = y2 lov) < Cllyor — vozlw+ | f1 — fa lLoave)}
(5.3) | v1 —v2 llear) < Cllyor — yo2ln+ | f1r = f2 oo vey )
|91 =92 llLa,ve) < Cllyor — yooln+ || f1 = fa llarvey b

where {y;,i = 1,2} denote the solutions of (5.1) corresponding to the pairs
{y0i7 fl}7z == 17 2.

Proof. We have set up the problem in the framework of J.L. Lions using
the Gelfand triple. Thus the proof is classical which is based on Fadeo-
Galerkin approximation. [

Remark. Under the assumption of Proposition 3.3, v < oo, the embedding
YV — 'H is compact. Let A : V — V* denote the canonical isomorphism
(duality map) of V onto V*. Then it is clear that A~! is a compact operator
in V* and hence there exists a countable sequence of eigen values and eigen
vectors of A~ each with finite multiplicity. The eigen vectors of A~! are
also the eigen vectors of A and they are complete in all the Gelfand triple.
In fact, they are orthogonal in V and V* and orthonormal in H. For proof of
Lemma 5.1 one can use this basis or any other complete orthonormal basis.
A more concrete basis (the Hermite basis) was introduced by Da Prato-
Zabczyk in [4, 5], which may be used not only for the proof of existence but
also for computation of solutions.

Now we are prepared to consider the following semilinear evolution equa-
tion in H

do/dt = Ap+ G(o) + f,t €1,

5.4
54) #(0) = ¢o.

We present here two general existence results for equation (5.4) and two
corollaries as application to the HJB equation (1.12).

Consider the operator A of Lemma 4.2, and set o = (1/2) and 8 > (1/2).
In view of the identity (4.13), we may write the ellipticity condition (4.14)
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as

<—Ap,p>+B o F>all o5

Theorem 5.2. Let A denote the generalized Ornstein-Uhlenbeck generator
as introduced in Lemma 4.2 and suppose G maps V to V* and there exists a
positive constant K < a such that

(G1): || GE) < K(1+ | € ) for all € €V
(G2): |G(E) —G() <K [[E=nllv forall&neV.
Then, for every ¢g € H and f € Lao(I,V*), the evolution equation (5.4) has

a unique solution in W.

Proof. First we give an a priori bound for the solution. Let ¢ denote a
solution of equation (5.4). Scalar multiplying equation (5.4) by ¢, in the
sense of V* V pairing, and using Cauchy-Schwartz inequalities one obtains,
for any € > 0, the following expression
t

BB+ 20— (K +0) [ 1 6(s) [} ds

(5.5) 0 '
< {loof + (130T 25 [ fo(s)ds + (1/e) [ £ B ds}

for all t € I. Since by our assumption 0 < K < «, we can choose € sufficiently
small so that K. = K + € < a. Fixing € at this value, and using Gronwall
inequality one can easily verify that

P ds}

T
6:6) 1o < oo+ (KT +1/0 [ 1176)]

for all ¢t € I. Using this estimate in (5.5) we also obtain

T 2
| e 15
T
< 7 /20~ K oufh+ (K2 /0T + (1)) [ 1 £(6) Iy ds}.
Clearly it follows from (5.6) and (5.7) that ¢ € Loo(I,H) N La(I, V). Using
the estimate (5.7) and the fact that A is a bounded linear operator from V

to V*, it follows from (5.4) that ¢ € Ly(I,V*). In fact, there exist positive
constants C; = Ci(«, 3, K, T),Cy = Ca(a, 5, K, T) such that

(5:8) 1612520 Cr+ Calldolft 11 £ 11Z,20m))-
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Hence if (5.4) has any solution it must belong to W. Now we prove the
existence. Let y,z € Lo(I,V)NC(I,H) with y(0) = 2(0) = ¢o. Consider the
system of equations

dp/dt = A¢ + G(y) + f,(0) = o,
dip/dt = AY + G(2) + f,4(0) = ¢o.

For the given vy, z, it follows from the linear growth that both G(y),G(z) €
Lo(1,V*), and hence by Lemma 5.1 each of these equations has unique so-
lutions ¢,1 € W. Let § = Sy denote the solution map so that ¢ = S(y)
and 1) = S§(z). First, we show that S has a unique fixed point in Ly(I, V).
Subtracting the second equation from the first it follows from (5.9) that

(5.10) d(¢ —v)/dt = A(¢ — ¢) + G(y) — G(2),$(0) — 4(0) = 0.

Following the procedure used in deriving the a-priori estimates (5.6) and
(5.7) one can easily show that for all t € I,

(5.9)

6) b OF +a [ 116() — v(s) I3 ds

(5.11)
<w/w» w()ds + (K*/a) [ 11 (s) = =(6) I} ds.

Using Gronwall lemma the following estimates follow from (5.11)

T
(E1) :sup[o(t) — ¢ (1)]* < (K*/a)e 2‘”/ 1 'y(s) = z(s) I3 ds,
(5.12) el 0

T
(B2): [ 11 05) = v(s) I} ds < (/)™ [ y(s) = 2() [} d.

Since by assumption o > K it follows from the estimate (£2) that there
exists a 7, 0 < 7 < Ty = (1/B)¢n(a/K) such that for T = 7 we have
(K/a)eP™ =, < 1, and consequently

(5.13) (R PN | K T | FANT AR

Thus the map S; = S|jo7], the restriction of S to La(I-,V), is a contraction
on Ly(I,V) and hence equation (5.4), considered over the interval I, has
a unique solution ¢ € Lo(I;,V). By virtue of the arguments leading to the
a-priori estimates, we have ¢ € W, and hence (1) € H. Since I = I is
a compact interval it can be covered by a finite union of closed intervals of
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length equal to 7. Obviously, on each of these intervals the solution of (5.4)
is uniquely determined starting from the states {@(k7), k = 0,1,2---,n}
where n is the largest integer satisfying nt < T. Hence, for each ¢g € H and
f € La(1,V*), the evolution equation (5.4) has a unique solution ¢ € W =
Wr. This completes the proof. [

Next we remove the restriction, a > K, and replace this with the condition
that the nonlinear operator G is more regular and now maps V to ‘H instead
of V to V*.

Theorem 5.3. Let A denote the generalized Ornstein-Uhlenbeck generator
as introduced in Lemma 4.2 and suppose G maps V to H and there exists a
positive constant K such that

(G): [ G(&) v K(1+ [ € [lv) for all § €V

(G2): [ G(&) —G() v K [[E=nlly forall &neV.

Then, for every ¢o € H and f € La(I,V*), the evolution equation (5.4) has a
unique solution in W. Further, equation 5.4 holds in the sense of V*-valued
distributions on I or more precisely as elements of Lo(I,V*).

Proof. The proof of this result requires a slight modification of that of
Theorem 5.2. Again starting from (5.9), instead of (5.11) we have

6(0) = O +20 [ 116() — w(s) I} ds
(5.14) < ((1+200/e) [ 16(5) ~ vls)ds
(k) [ 1yls) = 2(6) 3 ds,

for arbitrary € > 0, and for all ¢ € I. By virtue of Gronwall lemma, it follows
from this that, for any 7 € I,

(5.15)
(E1) 2 sup (1) = w0 < (20209797 [ y(s) - 2(s) [} ds,
(B2): [ 19(5) = 0ls) [} ds < {(ere?/20)e 220y [ y5) = 2(5) [} ds.

Clearly for contraction, it suffices to choose 7 so that

(5.16) 0 <7< —(e/(1+20€))n(eK?/2a).
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For (5.16) to hold we must choose € so that
(5.17) 0<e< (20/K?).

Defining
7(€) = —(¢/(1 4 28€))n(eK?/2a)

one can verify that there is an optimum € in the open interval specified by
(5.17) that maximizes this expression. In fact, this is given by the solution
of the following equation

(5.18) e = v(e) = 20/ K*)exp{—(1+2B¢)/(1 + 48¢)}.

Note that v(e),e > 0, is a bounded, positive and nondecreasing function of
€. Hence this equation has a unique fixed point €,, in the interval specified
by (5.17). Thus it suffices to choose 7 < 7(€,) for which the solution map
S is a contraction. The proof is now completed using the arguments of the
preceding theorem. n

Remark. Though the operator G is very general in theorem 5.2, we require
the coercivity of the linear operator A to dominate over the Lipschitz co-
efficient of G. In Theorem 5.3, the operator G is more regular and no such
dominance is necessary.

Now we consider the HJB equation (1.12) and prove the existence,
uniqueness and regularity properties of its solutions as corollaries of Theo-
rems 5.2 and 5.3 under two different assumptions on the operators F; and
Fo. To this end, we identify the nonlinear operator G of equation (5.4) as
follows:

(5.19) G(¢) = F1(¢) + F2(9).

First we present an existence result for the HJB equation (1.12) as a corollary
to Theorem 5.2.

Corollary 5.4. Let A denote the generalized Ornstein-Uhlenbeck generator,
associated with the formal differential operator Ag, as introduced in Lemma
4.2 and suppose both F(x) and {B(z)u,u € B, C U} are Borel measurable
maps in H and are in the image of \/Q and there exist constants k1, ks > 0
such that

|Q Y2F(z)|ly < k1(1+ |z|), for all z € H,

(5.20) s
| B*(z)Q ey < ko(1+ |z|), for allz € H,

AN
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and

sup{|h(u)|,u € B,} =h < 0.

Then, for every po € H and § € La(I,V*), the HIB equation (1.12) has a
unique solution p € W provided {ki, ka} are sufficiently small.

Proof. It suffices to verify that the operator G given by (5.19) satisfies the
assumptions (G1) and (G2) of Theorem 5.2. First, we verify the Lipschitz
condition. Let 1) € V and ¢4, p2 € V. Then using assumption (5.20) we have

|| (Filen) = Falea)vutdo)

= | (F@). D1 = g2))vn(de)

= 1] (@ 2P (@), QD1 — o)u(da)

<k [ IV@D(e1 — g2) (1 + el [0 @) (o)

where Q~1/2 is the pseudoinverse of \/@Q. Using the estimate (3.7) of Propo-
sition 3.3, it follows that

I/H(fl(sm) — Fi(p2))p(d)| < ka1 | o1 — 2 llv (Il +VC || 9 [|v)
<kA+VO) [ei—w2lv ¢y
Since this is true for arbitrary v € V), it follows that

(5.21) | F1(1) = Filpa) < ki1 +VC) [l o1 — 02 |y -

This is simply based on the arguments of distribution theory of Section 4.
For the operator F», note that the Hamiltonian H is Lipschitz (see
equation 1.4),

(5.22) |H(x,q) — H(z,p)| <r|lg—p|ly, forall ze€ H.
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Then using assumption (5.20), it is easy to see that

|| (Falien) = Falon) )

<| [ 71 B @D~ ) o 1bl(da)

<r [ 1B @Q 2 | V@D(e1 = pa) |l [ln(da)

< ks [ VQD(e1 = 02l (1 + el (@) |u(de).
Again using the estimate (3.7) of Proposition 3.3, it follows from this that
(5.23) | Fa(p1) = Falipa) llve< kar(1+ VO) || o1 — 2 [lv -
Now it follows from (5.19), (5.21) and (5.23) that
(5.24) I G(p1) = Gl2) v+< (kr +kar)(L+VC) [ o1 =2 [Iv -
Following similar procedure one can verify the growth condition

(5.25) I G(¢) lv< a1+ [ ¢ [[v).

for a suitable constant cy dependent only on {ki, ko, R,C,h}, where h =
{|h(u)|,u € B,}. Let K denote the smallest positive number equal or less
than (k; + kor)(1 4 v/C) such that

(5.26) Sup A <Gle) =Gl v >vy < Kler =2 v
y=

for all @1, € V. Then it follows from Theorem 5.2 that for K < «, the
HJB equation (1.12) has a unique solution ¢ € W. |

The following result is a corollary of Theorem 5.3.

Corollary 5.5. Let A denote the generalized Ornstein-Uhlenbeck generator
as introduced in Lemma 4.2 and suppose both F(x) and {B(z)u, u € B,
C U} are Borel measurable maps in H and are in the image of v/Q and
there exist constants ki, ke > 0 such that

sup |Q_1/2)F(ac)|H =k < 00, sup | B*(:L‘)Q_l/2 | c(r,0)= ka2 < 00
reH reH
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Then, for every po € H and § € Lao(I,V*), the HIB equation (1.12) has a
unique solution @ € W.

Proof. In view of Theorem 5.3, it suffices to verify that, under the given
assumptions, the operator G = F; + F» satisfies the hypotheses of Theorem
5.3. For the growth condition it is clear that for each ¢ € V,

P = [ (@), Do) p(da)

(5.27)
= [ (@), V@D u(dr) < K |10 [}
H

Similarly, we have
P& = [ 1H, B (@)D6) Pulde)
(5.28) < /H(B+rIB*(w)Q‘l/ZQl/gDﬂﬁlu)zu(dm)
< [ (i kol QDO () ) n(d),
where & = sup{|h(u)|,u € B, C U}. Thus

(5.29) |Fa(P)l < (h+rha || ¢ [|v).

Clearly, it follows from this that both Fi,F2 map V to ‘H and further, by
virtue of the estimates (5.27) and (5.29), there exists a constant k3 such that

(5.30) I G(9) [ln< ks(1+ [ ¢ [Iv)-

Similarly, for the Lipschitz property, it is easy to see that

| Fi(o1) — Fi(d2) < ki | 1 — o2 llv
| Fa(dr) — Fald2) [n< k2 || ¢1 — @2 [lv -

From these estimates we have
(5.31) | G(¢1) — G(92) [[H< (k1 +7k2) || 1 — b2 ||y -

Taking K = max{ks, (k1 + rk2)} the nonlinear operator G satisfies the as-
sumptions of Theorem 5.3. This completes the proof. [
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Remark. In view of Corollaries 5.4 and 5.5, it is very interesting to see
that the HJB equation (1.12) has generalized solutions under very general
assumptions, like Borel measurability and linear growth conditions, for the
maps F' and B. By imposing further regularity conditions on the maps F' and
B, such as Lipschitz continuity and linear growth, one can prove that these
generalized solutions are truly the value function of nonstationary control
problems (1.1 - 1.3).

In the following section, we demonstrate how the preceding results are
applied to control problems. Here we are interested only in the stationary
control problem.

6. Stationary HJB equation and feedback control

We consider the stationary HJB equation (1.11) or equivalently the func-
tional equation (1.14). We prove that for sufficiently large 6 > 0, it has
a unique solution in V. We replace the operator Ay by its extension A. In
other words we solve the equation

(6.1) U =R(6,A)Gy(¥) = R(5, A)G(¥) + R(5, A)g,

in the Sobolev space V. We add to the hypothesis (H4) the following
assumption.

(H4)" : The Laplace transform (\) given by y(\) = Joee M| T(@) | dt,
is a nonicreasing function of A € [0, 00) and limy_ y(\) = 0.

A necessary and sufficient condition under which this hypothesis holds
is given by Gozzi and Rouy [1]. For example, if

| T(t) | < C1/t? + Coe™
for some constants Cy,Cy,v > 0, and 6 € [0, 1), then (H4)" holds.

Theorem 6.1. Suppose the assumptions of Corollary 5.5 and the hypothesis
(H4), hold. Then for sufficiently large discount factor 6 > 0, and for every
g € H, the stationary HJB equation (1.11) or equivalently the functional
equation (6.1) has a unique solution ® € V.

Proof. We prove that, for sufficiently large § > 0, the functional equation
(6.1) has a unique solution in V. This is equivalent to showing that, for
sufficiently large 6 > 0, the composition map R(,.A)G, has a unique fixed
point in V. First we verify that this operator maps V into itself. For this
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we must show that, for any 6 > 0, R(d,.A) maps H to V. It follows from
Cameron-Martin formula that, for any h € H,

62 (DRo@).) = [ s@) W0 Q PYN(Sh,Q))dy).

for all ¢ € H. For details see Da Prato-Zabczyk [5, 6]. Using Schwartz
inequality it follows from (6.2) that

(6.3) (DRi(x),h)* < Reg?(x)|T(t)h]F, = € H.

Since p is an invariant measure with respect to the Ornstein-Uhlenbeck
semigroup Ry, t > 0, it follows from this that

(6.4) [DRi¢lr <[ T() [| [dln;
where T'(t) = Q;I/QS’(IS) as given in hypothesis (H4). Hence

(6.5) |DR(6, A)plr < v(6)|9|n,

where v(0) = [;°e ™% || I'(t) | dt. Since Ry, t > 0, is a Cy-semigroup of
contractions in H, it follows from this that

(6.6) I RS, A)o [[v< ((1/8)+ | VQ Il 7(8)) Il

This shows that for each § > 0, R(d,.A) maps H to V. We have already seen
in Corollary 5.5 (see equation (5.30)) that G maps V into H. Since g € H, it
follows from these results that the composition map R(d,.A)Gy maps V into
itself. Now we prove that, for sufficiently large § > 0, it has a fixed point.
By Corollary (5.5), G satisfies the Lipschitz condition (see equation (5.31))
with Lipschitz constant K. Hence

” R(5 A)Gg(p1) — R(6, A)Gy(¢2) [lv
)+ I VQ | v(0)|Gy(61) — Gylda)lm
1/5+”\FH7 N é1 =2y
_7( ) ¢1 =2 lv -

(6.7)

By virtue of the hypothesis (H 4)/, 7 is also a positive nonincreasing function
n [0,00) and 4(d) — 0 as § — oo and hence there exists a 9 > 0 such
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that the operator R(J, A)Gy is a contraction in V for all § > . Thus for
any § > g, it follows from Banach fixed point theorem that the operator
R(0, A)G4 has a unique fixed point ® in V. Hence ® € V is the unique
solution of the stationary HJB equation (1.11) provided 6 > dp. ]

Remark. Note that since ® € V and G4(®) € H and & satisfies equation
(6.1), we have A® € H.

Here we present an application of theorem 6.1 to the infinite horizon
control problem. Let § > §p and consider the stationary control problem
(1.10) and suppose ® is the unique solution of equation (1.11) for the given 6.
For the next result we need separability of the control space U. In fact, we
can take any separable metric space and not necessarily Hilbert space. We
prove the following result.

Theorem 6.2. Suppose h is weakly lower semicontinuous on U and the
assumptions of Theorem 6.1 hold with § > dy. Let ® be the unique solution
of the stationary HJB equation (1.11). Then the stationary control problem
has a solution in the sense that there exists a Borel measurable map (control
law) v* : H — B, C U which is optimal and for each initial state x € H,
®(x) coincides with the value function V(x).

Proof. Since ® is the solution of (1.11) and B*(z)Q~Y? € L(H,U) we
have |[\/QD®| € H and

| B*Q~'/2/QD% ||y=| B*D® ||y€ K.

Hence B*D® is a p-measurable U-valued function on H. Recall that the
function ¢ — H(x,q) is continuous (even Lipschitz) on U p-a.e. = € H.
Since a continuous function of a measurable function is measurable, the
function v given by

¢() = H(, B*(-)D®("))
is measurable and belongs to the class H = Lo(H, ). Define the multi-
function M : (H, By) — 2B~ c 2V by

M(z) ={u € B, : () = L(z, B*(z) D®(x),u) = (u, B*(z) D®(z)) + h(u)}.

Since h is weakly lower semicontinuous and B, is a closed ball in U,
and v is Measurable, M is a nonempty graph measurable multifunction
from (H,Bpg) to (U,By). Then it follows from a well known selection the-
orem due to Yankov-Von Neumann-Aumann [12, Theorems 2.14, 2.25],



124 N.U. AHMED

that M has a Borel measurable selection u* : H — B, so that ¢(x) =
(u*(x), B*(x)D®(z)) + h(u*(x)), p-a.e. = € H. In fact, this is true if A is
only bounded Borel measurable. For details on measurable multifunctions
and their measurable selections we refer the reader to the excellent book
by Hu and Papageorgiou [13]. Take any admissible control u € US,; and let
X (t,x) denote the solution of the SDE,

dX = (AX + F(X))dt + B(X)u(X)dt + /QdW,

(69) X(0,z) ==,

corresponding to this control law. Since under the given assumptions
B(x)u(x) is a bounded Borel measurable function with values in H, the
solution exists in the martingale sense on an extended probability space
(Skorohod extension) where a cylindrical Brownian motion W is defined.
This is justified by the technique of substitution of drifts via Girsanov for-
mula. For details see [6, 3]. By virtue of the remark following Theorem 6.1,
A® € H, and hence we can apply Ito formula to the process

U(t, X (t,z)) = e Od(X(t,)),t >0,

for a fixed & > 0y and obtain
e 'ED(X(t,x))
— &)+ E /O "
—®(z)+ E /0 "
+ h(u (X)) + g(X)}ds

+ E/Ot 6—58{(Dq>, B(X) (1 — u")) — g(X) — h(u*(X))}ds.

5% + AD 1 Fy(®) + (DO, B(X)u(X))}ds

—60 + AP + Fi(®) + (D®, B(X)u* (X))

—55{
—55{

Clearly, it follows from the definition of the operator F» as given in (1.6),
that

(De(x), B(x)u®(z)) + h(u*(z)) = Fa(p)(x).

Thus letting £ denote the operator

Lo =—6p+ Ap+ Fi(p) + Fa(p) + 9,
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we can rewrite the above expression as
e E(X(t,2)) = B(x) + E /0 Lo (X (s))ds
+ E/Ote‘ss{(Dtb, B(X)(u — u*))
+ h(u(X)) = h(w* (X)) = h(u(X)) - g(X)}ds
= ®(z) + E/Ot e“ss{L(X, B*(X)D®(X),u(X))

— L(X, B*(X)D@(X),u*(X))}ds - E/Ot e {g(X) + h(u(X))}ds.

The last line follows from the fact ® satisfies the stationary HJB equation
equivalent to (6.1) and hence L&(x) = 0 p-a.e. Now letting t — oo it follows
from the above expression that

J(u,z) = ®(z) + E / e5t{L(X, B*(X)D®(X), u(X))
0
— L(X, B*(X)D®(X), u*(X))}dt
= ®(z) + E/ e‘5t{L(X, B*(X)D®(X),u(X))
0
_H(X, B*(X)D@(X))}dt.
Taking infimum over the class U, and recalling that u* € U, it follows
from this that
V(z) = inf{J(u,x),u € Uy} = ().

Hence the solution @ of the stationary HJB equation is the optimal cost. m
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