ArticleOriginal scientific text
Title
Ball intersection model for Fejér zones of convex closed sets
Authors 1
Affiliations
- Electrotechnics and Computer Science College, Wismar, Philipp-Müller-Str. PF 1210, D-23952 Wismar, Germany
Abstract
Strongly Fejér monotone mappings are widely used to solve convex problems by corresponding iterative methods. Here the maximal of such mappings with respect to set inclusion of the images are investigated. These mappings supply restriction zones for the successors of Fejér monotone iterative methods. The basic tool is the representation of the images by intersection of certain balls.
Keywords
set-valued mappings, Fejér monotone mappings, relaxations, central stretching, convex sets, ball intersections
Bibliography
- I.I. Eremin and V.D. Mazurov, Nestacionarnye Processy Programmirovanija, Nauka, Moskva 1979.
- J.-P. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Springer-Verlag, Berlin et. al. 1993.
- J.T. Marti, Konvexe Analysis, Birkhäuser Verlag, Basel 1977.
- R.T. Rockafellar, Convex Analysis, Princeton, New Jersey 1972.
- D. Schott, Iterative solution of convex problems by Fejér monotone methods, Numer. Funct. Anal. Optimiz. 16 (1995), 1323-1357.
- D. Schott, Basic properties of Fejér monotone sequences, Rostock. Math. Kolloq. 49 (1995), 57-74.
- D. Schott, Basic properties of Fejér monotone mappings, Rostock. Math. Kolloq. 50 (1997), 71-84.
- D. Schott, About strongly Fejér monotone mappings and their relaxations, Zeitschr. Anal. Anw. 16 (1997), 709-726.
- D. Schott, Weak convergence of Fejér monotone iterative methods, Rostock. Math. Kolloq. 51 (1997), 83-96.
- D. Schott, Strongly Fejér monotone mappings, Part III: Interval union model for maximal mappings, preprint.
- H. Stark, (ed.), Image recovery: Theory and applications, Academic Press, New York 1987.