ArticleOriginal scientific text
Title
Equilibrium of maximal monotone operator in a given set
Authors 1
Affiliations
- Technical University of Łódź, ul. Żwirki 36, 90-924 Łódź, Poland
Abstract
Sufficient conditions for an equilibrium of maximal monotone operator to be in a given set are provided. This partially answers to a question posed in [10].
Keywords
subdifferentials, maximal monotonicity, equilibrium points, min-max
Bibliography
- A. Drwalewska and L. Gajek, On Localizing Global Pareto Solutions in a Given Convex Set, Applicationes Mathematicae 26 (1999), 383-301.
- L. Gajek and D. Zagrodny, Countably Orderable Sets and Their Applications in Optimization, Optimization 26 (1992), 287-301.
- R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, Springer-Verlag, Berlin, Heidelberg 1989.
- M. Przeworski and D. Zagrodny, Constrained Equilibrium Point of Maximal Monotone Operator via Variational Inequality, Journal of Applied Analysis 5 (1999), 147-152.
- M. Przeworski, Lokalizacja Punktów Wykresu Operatora Maksymalnie Monotonicznego, Praca doktorska, Instytut Matematyki Politechniki ódzkiej 1999.
- R.T. Rockafellar and R.J-B. Wets, Variational Analysis, Springer-Verlag, Berlin, Heidelberg 1998.
- S. Rolewicz, Metric Linear Spaces, PWN, Warszawa and D. Reidel Publishing Company, Dordrecht, Boston 1984.
- S. Simons, Subtangents with Controlled Slope, Nonlinear Analysis, Theory, Methods and Applications 22 (11) (1994), 1373-1389.
- S. Simons, Swimming Below Icebergs, Set-Valued Analysis 2 (1994), 327-337.
- S. Simons, Minimax and Monotonicity, Springer-Verlag, Berlin, Heidelberg 1998.
- E. Zeidler, Nonlinear Functional Analysis and Its Applications, IIB Nonlinear Monotone Operators, Springer-Verlag, Berlin, Heidelberg 1989.
- D. Zagrodny, The Maximal Monotonicity of the Subdifferentials of Convex Functions: Simons' Problem, Set-Valued Analysis 4 (1996), 301-314.