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Abstract

In the present paper rather general penalty/barrier path-following
methods (e.g. with p-th power penalties, logarithmic barriers, SUMT,
exponential penalties) applied to linearly constrained convex optimiza-
tion problems are studied. In particular, unlike in previous studies
[1, 11], here simultaneously different types of penalty/barrier embed-
dings are included. Together with the assumed 2nd order sufficient
optimality conditions this required a significant change in proving the
local existence of some continuously differentiable primal and dual
path related to these methods. In contrast to standard penalty/barrier
investigations in the considered path-following algorithms only one
Newton step is applied to the generated auxiliary problems. As
a foundation of convergence analysis the radius of convergence of
Newton’s method depending on the penalty/barrier parameter is
estimated. There are established parameter selection rules which
guarantee the overall convergence of the considered path-following
penalty/barrier techniques.
Keywords: penalty/barrier, interior point methods, convex optimiza-
tion.
1991 Mathematics Subject Classification: 49M15, 65K10, 65H10,
90C25.

1 Introduction

In this paper we investigate the local convergence of a general penalty/barrier
path-following Newton applied to linearly constrained optimization
problems
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f(x) → min !

subject to x ∈ G := {x ∈ IRn : aT
i x ≤ bi, i = 1, . . . , m }.

(1)

Here ai ∈ IRn and bi ∈ IR, i = 1, . . . ,m denote given vectors and constants,
respectively, describing the linear constraint functions gi(x) := aT

i x− bi, i =
1, . . . ,m of the problem. Moreover, it is assumed that the objective f is a
twice continuously differentiable function.

The existence of a local path plays an essential role in penalty/barrier
path-following methods. In difference to [1] here we study this task for strict
local solutions of a nonlinear optimization problem with twice continuously
differentiable constraint functions gi, i = 1, . . . ,m. The main part of our
study is dedicated to these more general problems. Only the direct analy-
sis of the path-following method itself is restricted to linearly constrained
problems (1).

Let x∗ denote a local solution of (1) and let be satisfied the well known
linear independence constraint qualification. Hence, a related dual multiplier
y∗ ∈ IRm exists such that Karush-Kuhn-Tucker conditions

∇xL(x∗, y∗) = 0,

y∗ ≥ 0, g(x∗) ≤ 0,

y∗T g(x∗) = 0,

(2)

hold, where L is the Lagrangian

L(x, y) := f(x) +
m∑

i=1

yi gi(x), x ∈ IRn, y ∈ IRm
+ .

In addition to the supposed linear independence of the gradients we assume
strict complementarity

y∗i > 0 ⇐⇒ gi(x∗) = 0(3)

and
w ∈ IRn, w 6= 0,

∇gi(x∗)T w = 0, i ∈ Io



 ⇒ wT∇2

xxL(x∗, y∗)w > 0,(4)

where Io := Io(x∗) := {i ∈ I : gi(x∗) = 0} with I := {1, . . . , m}. Thus,
second order sufficiency optimality conditions (cf. [9]) are satisfied which



Penalty/barrier path-following in ... 9

imply that x∗ is the unique minimizer of (1) and that x∗ is stable under
perturbations. In addition, we have

G0 6= ∅, where G0 := {x ∈ IRn : gi(x) < 0, i ∈ I }.

2 General penalty/barrier embeddings

Let IR++ := {t ∈ IR : t > 0} and let IR := IR ∪ {+∞}, i.e., IR denotes the
set of reals extended by +∞. Using a parametric penalty/barrier functions
ϕ i(·, ·) : IR× IR++ → IR, i = 1, . . . , m, we define related auxiliary problems

F (x, s) := f(x) +
m∑

i=1

ϕ i(gi(x), s) → min !

s.t. x ∈ Bs := {x ∈ IRn : ϕ i(gi(x), s) < +∞, i = 1, · · · ,m },
(5)

where s ∈ IR++ denotes a fixed penalty/barrier parameter.
Considered will be functions ϕ i(·, s) which for fixed s > 0 are differen-

tiable at any t ∈ domϕ i(·, s) and can be represented by

∂

∂t
ϕ i(t, s) = ψi

(
t

s

)
, ∀ t ∈ domϕ i(·, s), s > 0,(6)

with some functions ψi : IR → IR, ψi 6≡ 0, i = 1, . . . ,m which essentially
satisfy:

(i) The domain of ψi is either IR++ or IR;

(ii) ψi : IR → IR continuous (in the sense of IR), and ψi continuously
differentiable in domψi ;

(iii) ψ′i(r) ≥ 0, ∀ r ∈ dom ψi, and lim
r→−∞ψi(r) = 0;

(iv) ψ′i Lipschitz continuous on domψi in the sense that ψ′i is locally
Lipschitz continuous

|ψ′i(ρ1)− ψ′i(ρ2)| ≤ L1(r) |ρ1 − ρ2|, ∀ |ρ1|, |ρ2| ≤ r, r ∈ domψi,

and at −∞ satisfies

|ψ′i(ρ1)− ψ′i(ρ2)| ≤ L2(r)
∣∣∣∣
1
ρ1
− 1

ρ2

∣∣∣∣ , ∀ ρ1, ρ2 ≤ r < 0;
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(v) Either lim
r→+∞ψi(r) = +∞ or y∗i < ψi(0) holds;

(vi) ψ′i ◦ ψ−1
i isotone and positive on intψi(IR);

(vii) lim
r→−∞ r2ψ′i(r) exists.

A representation (6) with functions ψi that satisfy the assumed properties
can be found for a wide range of penalty/barrier functions ϕ i studied in the
literature. The same representation (6), but with slightly different properties
of ψi has recently been considered within the framework of saddle points
of generalized Lagrangians based on penalty/barrier embeddings in [2, 3].
By relation (6) the penalty/barrier functions ϕ i(·, s) are well defined, up
to an arbitrary function which depends exclusively on s, by its generating
functions ψi. Since the solution of the auxiliary problem (5) is independent of
additive constants, we may choose it arbitrarily. If we select this according to

lim
s→0+

ϕ i(−1, s) = 0, i = 1, . . . , m,(7)

then (6) implies the well known (c.f. [9, 12, 14]) penalty/barrier property

lim
s→0+

ϕ (t, s) =

{
0, if t < 0,

+∞, if t > 0.
(8)

Further, we notice that the given property (i) guarantees the set Bs to be
independent of the embedding parameter s > 0. Hence, in the sequel we
will omit this index.

As representative examples of penalty/barrier embeddings included in
our paper the following well known types are listed:

• logarithmic barrier function

ϕ (t, s) =

{
−s ln(−t), if t < 0,

+∞, if t ≥ 0,
∀ s > 0,

ψ(r) =

{
|r|−1

, if r < 0,
+∞, if r ≥ 0.

(9)

• p-th power barrier function (p > 0 is a fixed parameter)
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ϕ (t, s) =





1
p

sp+1

|t|p , if t < 0,

+∞, if t ≥ 0,
∀ s > 0,

ψ(r) =

{
|r|−(p+1)

, if r < 0,
+∞, if r ≥ 0.

(10)

• p-th power loss function (p ≥ 2 is a fixed parameter)

ϕ (t, s)=
1
p

s−(p−1)maxp{0, t}, ∀s> 0, ψ(r) = maxp−1{0, r}.(11)

• exponential penalty function

ϕ (t, s) = s exp(t/s), ∀ s > 0, ψ(r) = exp(r).(12)

• smoothed exact penalty function

ϕ (t, s) = c
(
t +

√
t2 + s2

)
, ∀ s > 0,

ψ(r) = c

(
1 + r√

r2 + 1

)
,

(13)

with an arbitrary fixed c > max y∗i .

In the case of (13) a rough upper bound for the Langrangian multipliers can
be used as the required constant c. We refer to [12] for further modifications
of (13) for the case if such a bound is not available.

Due to the assumed penalty/barrier properties the set B ⊂ IRn is open.
Hence, any minimizer x(s) of the auxiliary problem (5) has to satisfy the
first order necessary optimality condition

∇f(x(s)) +
m∑

i=1

ψi(gi(x(s))/s)∇gi(x(s)) = 0.(14)

Related to x(s) ∈ B ⊂ IRn an approximation y(s) ∈ IRm
+ of the optimal dual

multiplier y∗ can be defined by

yi(s) := ψi(gi(x(s))/s), i = 1, . . . ,m; s > 0.(15)

Further, we set

x(0) := x∗, y(0) := y∗.(16)
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In the sequel we concentrate our attention to (14) and investigate the be-
havior of Newton’s method applied to it.

Before the convergence of a path-following Newton algorithm is studied,
we show that the supposed properties of the generating functions ψi guaran-
tee the local existence and the (right side) differentiability of the primal-dual
trajectory (x(s), y(s)) in [0, s̄] with some s̄ > 0. In difference to [1] here we
do not assume that the objective function is strongly convex. Instead, a re-
lated theory of perturbations of local solutions x∗ that satisfies second order
sufficiency conditions is developed. This difference in assumptions requires
a significant change in the analysis of the primal-dual path. So, the main
effort in the present paper is dedicated to the study of the behavior of this
trajectory. Moreover, unlike in [1] here each of the constraints is treated
individually by possibly different penalty/barrier embeddings.

First we provide an essential technical result about the solutions of cer-
tain parameter dependent linear systems which will be used later in the esti-
mation of the derivatives of the local primal-dual path as well as in bounding
the radius of contraction on Newton’s method applied to penalty/barrier
problems. A similar question is investigated in [17], but with a rather dif-
ferent approach.

Lemma 1. Let be Q̃ ∈ L(IRn) symmetric, positive definite and P̃ ∈
L(IRs, IRn), s ≤ n, full rank matrices, respectively. Then some δ > 0 exists
such that for any w ∈ IRs, α > 0 and matrices Q ∈ L(IRn), symmetric and
P ∈ L(IRs, IRn), satisfying

‖ Q̃−Q ‖ ≤ δ, ‖P̃ − P ‖ ≤ δ(17)

the linear system

(Q + αPP T ) z = α Pw(18)

possesses a unique solution z ∈ IRn which can be estimated by

‖z‖ ≤ c ‖w‖,(19)

where c > 0 is a constant independent of the parameter α > 0.

Proof. Since Q̃ is positive definite, δ > 0 can be chosen such that any
symmetric matrix Q is also positive provided ‖Q̃ − Q‖ ≤ δ. In addition,
some γ, γ̄ > 0 exist with
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γ ‖v‖2 ≤ vT Qv ≤ γ̄ ‖v‖2, ∀ v ∈ IRn.(20)

Hence, for any α > 0 the system matrix in (18) is positive definite. Thus
(18) possesses a unique solution z ∈ IRn.

Because of the assumed full rank property of P̃ the constant δ > 0 can
be selected that (20) remains valid and some c1 > 0 exists with

P ∈ L(IRs, IRn),

‖P̃ − P ‖ ≤ δ



 =⇒ ‖(P T P )−1P ‖ ≤ c1.(21)

We split the vector w ∈ IRs according the direct sum IRs = N (P )⊕R(P T )
by

w = (I − P T (P T P )−1P )w + P T (P T P )−1P w.

Hence, the linear system (18) is equivalent to

(Q + αPP T ) z = α PP T v with v := (P T P )−1P w.(22)

Since Q ∈ L(IRn) is symmetric, positive definite and PP T ∈ L(IRn) is
symmetric, a complete system {uj}n

j=1 ⊂ IRn of generalized eigenvectors
and eigenvalues {λj} ⊂ IR+ exists with

PP T uj = λj Quj , j = 1, . . . , n(23)

and

(ui)T Quj = δij , i, j = 1, . . . , n,(24)

where δij denotes Kronecker’s symbol. Obviously, {uj}n
j=1 ⊂ IRn forms a

basis in IRn. Now, we expand the vectors v, z from system (22) in this basis,
i.e.

v =
n∑

j=1

νju
j , z =

n∑

j=1

ζju
j ,(25)

with coefficients νj , ζj ∈ IR, j = 1, . . . , n. Then (22) – (25) result in

ζj =
α λj

1 + α λj
νj , j = 1, . . . , n.(26)

By Bessel’s equation we have

‖z‖2
Q := zT Qz =

n∑

j=1

ζ2
j , ‖v‖2

Q := vT Qv =
n∑

j=1

ν2
j .
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Hence, (26) with λj ≥ 0, j = 1, . . . , n yields

‖z‖Q ≤ ‖v‖Q,

for any α > 0. Due to (20) the norms ‖ · ‖Q are uniformly equivalent to the
Euclidean norm and with (21) we obtain

‖z‖ ≤
√

γ̄

γ
c1 ‖w‖,(27)

independently of the parameter α > 0.

Remark 1. For the case of a fixed matrix P which is not full rank an
estimate of type (27) independent of α > 0 is still possible by using Moore-
Penrose pseudo inverse (P T )+ of P T instead of its representation (P T P )−1P
for full rank matrices. This yields

‖z‖ ≤
√

γ̄

γ
‖(P T )+‖ ‖w‖.(28)

However, this estimate is not uniform concerning perturbations of P as
stated in Lemma 1 under the full rank assumption.

Theorem 1. Under the made assumptions exist some s̄ > 0, δ > 0 such
that for any s ∈ (0, s̄) the parametric system (14) of nonlinear equations
possess unique solutions x(s) ∈ B ∩ Uδ(x∗) and with y(s) related to x(s) by
(15), (16) holds

lim
s→0+

(x(s), y(s)) = (x∗, y∗).

With the setting (16) the functions x(·), y(·) are continuously differentiable
in (0, s̄), possess a right side derivative at s = 0 and these derivatives are
bounded for s → 0+.

Proof. Let us consider a perturbed KKT-system

∇f(x) +
∑

i∈I0

yi∇gi(x) = r,

s ψ−1
i (yi) = gi(x), i ∈ I0,

(29)

with s ∈ IR and r ∈ IRm. In particular, the properties of the generating
functions ψi and strict complementarity guarantee y∗i ∈ intψi(IR), i ∈ I0.
Thus ψ−1(y∗i ), i ∈ I0 is well defined and we have
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∇f(x∗) +
∑

i∈I0

y∗i ∇gi(x∗) = 0,

0 · ψ−1
i (y∗i ) = gi(x∗), i ∈ I0,

(30)

i.e. the optimal solution x∗ and its related dual multipliers y∗i , i ∈ I0,
satisfy (29) for s = 0, r = 0. Without loss of generality, the constraints can
be numbered such that I0 = {1, . . . , m0} with some m0 ≤ m. The assumed
second order sufficiency condition (4) implies that the (n + m0, n + m0)-
matrix




∇2f(x∗) +
∑

i∈I0

y∗i ∇2gi(x∗) ∇g1(x∗) ∇g2(x∗) · · ∇gm0(x
∗)

∇g1(x∗)T 0 0 · · 0

∇g2(x∗)T 0 0 · · 0
·· · · · · ·

∇gm0(x
∗)T 0 0 · · 0




is regular (cf. [9, 14]). Now, according to the implicit function theorem
some δ > 0, s1 > 0, ρ > 0 exist such that for any |s| ≤ s1, ‖r‖ ≤ ρ there
exist unique x(s, r) ∈ Uδ(x∗) and yi(s, r) ∈ Uδ(y∗i ), i ∈ I0, which satisfy

∇f(x(s, r)) +
∑

i∈I0

yi(s, r)∇gi(x(s, r)) = r,

s ψ−1
i (yi(s, r)) = gi(x(s, r)), i ∈ I0.

(31)

Moreover, these x(·, ·) and yi(·, ·), i ∈ I0 are differentiable. Since the number
of constraints is finite, without loss of generality we can assume that δ > 0
is selected such that

gi(x) ≤ −σ, ∀x ∈ Uδ(x∗), i ∈ I\I0(32)

holds with some σ > 0. By means of x(r, s) for fixed s ∈ (0, s1] we define a
mapping P : Uρ(0) ⊂ IRn → IRn by

P r := −
∑

i6∈I0

ψi

(
gi(x(s, r))

s

)
∇gi(x(s, r)).(33)

The supposed properties of the generating functions ψi and (32) guarantee
that some s2 ∈ (0, s1] exists that for any fixed s ∈ (0, s2] the mapping P
defined by (33) satisfies

P r ∈ Uρ(0), ∀ r ∈ Uρ(0)
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and is contractive on Uρ(0). Hence, for any s ∈ (0, s2] there is a unique fixed
point r(s) ∈ Uρ(0) of the operator P , i.e.

r(s) = −
∑

i 6∈I0

ψi

(
gi(x(s, r(s)))

s

)
∇gi(x(s, r(s))).

Let us abbreviate x(s) := x(s, r(s)), yi(s) := yi(s, r(s)), i ∈ I, where

yi(s, r) := ψi

(
gi(x(s, r))

s

)
, i 6∈ I0, s ∈ (0, s2].(34)

With the definition of x(s, r) and the properties of ψi we have x(s) ∈ B. In
addition, (32) yields

lim
s→0+

r(s) = 0.(35)

With (32), (34) this implies lim
s→0+

x(s) = x∗ and lim
s→0+

y(s) = y∗.

On the other hand, by (31), (33) we obtain

∇f(x(s)) +
m∑

i=1

ψi

(
gi(x(s))

s

)
∇gi(x(s)) = 0, s ∈ (0, s2].(36)

With x(s) ∈ B ∩ Uδ(x∗) this proves the local existence of the primal path.
Now, the local existence of the dual path results from the given implicit
function arguments and (34).

Before we continue, let us notice that property (vii) supposed for ψi

implies (see [1]) the existence of the limits

ci := lim
ρ→−∞ ρψi(ρ).

Now, let us define r(0) := 0 and we study

lim
s→0+

r(s)− r(0)
s− 0 = − lim

s→0+

∑

i6∈I0

ψi

(
gi(x(s))

s

)

s
∇gi(x(s))

= −
∑

i6∈I0

∇gi(x∗) lim
s→0+

gi(x(s))
s

ψi

(
gi(x(s))

s

)
1

gi(x(s))

= −
∑

i6∈I0

∇gi(x∗)
gi(x∗)

lim
ρ→−∞ ρψi(ρ) =

∑

i6∈I0

ci
∇gi(x∗)
gi(x∗)

.
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Thus, r is differentiable from the right at s = 0. As a consequence the
implicit function theorem and chain rule guarantee the differentiability of
the functions x(s) = x(s, r(s)), yi(s, r(s)) = yi(s), i ∈ I0, at s = 0 from the
right. As already shown, also yi(·), i 6∈ I0, are differentiable from the right
at s = 0, namely D+yi(0) = 0, i 6∈ I0.

Now, we consider the case s ∈ (0, s2]. Then x(s), y(s) satisfy the system

∇f(x(s)) +
m∑

i=1

yi(s)∇gi(x(s)) = 0,

ψi

(
gi(x(s))

s

)
− yi(s) = 0, i = 1, . . . ,m.

(37)

Differentiation of system (37) w.r.t. the parameter s yields

H(s)

(
ẋ(s)
ẏ(s)

)
=

(
0

q(s)

)
,(38)

where H(s) denotes the (n + m,n + m)-matrix

H(s) :=




∇2f(x(s)) +
m∑

i=1

yi(s)∇2gi(x(s)) ∇g1(x(s)) ∇g2(x(s)) · ∇gm(x(s))

ψ′1

(
g1(x(s))

s

)
∇g1(x(s))T −s 0 · 0

ψ′2

(
g2(x(s))

s

)
∇g2(x(s))T 0 −s · 0

·· · · · ·
ψ′m

(
gm(x(s))

s

)
∇gm(x(s))T 0 0 · −s




,

q(s) := (q1(s), . . . , qm(s))T , with qi(s) := s−1 ψ′i
(

gi(x(s))
s

)
gi(x(s)), and

ẋ(s), ẏ(s) denote the derivatives of x(s) and y(s), respectively. These deriva-
tives exist due to the implicit function theorem, since the matrix H(s) is
regular. Next, we estimate the derivatives ẋ(s), ẏ(s) by using the structure
and properties of H(s). With the abbreviations
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R := ∇2f(x(s)) +
m∑

i=1

yi(s)∇2gi(x(s)) = ∇2
xxL(x(s), y(s)),

T1 := {∇g1(x(s), . . . ,∇gm0(x(s))} ,

T2 := {∇gm0+1(x(s), . . . ,∇gm(x(s))} ,

D1 := diag
{

ψ′1

(
g1(x(s))

s

)
, . . . , ψ′m0

(
gm0(x(s))

s

)}
,

D2 := diag
{

ψ′m0+1

(
gm0+1(x(s))

s

)
, . . . , ψ′m

(
gm(x(s))

s

)}
,

system (38) has the form

R ẋ + T1 ẏ1 + T2 ẏ2 = 0,

D1 T1
T
ẋ − s ẏ1 = q1,

D2 T2
T
ẋ − s ẏ2 = q2.

(39)

Here y1, y2 and q1, q2 denote the splittings of y(s) and q(s) respectively,
adjusted to the sub-matrices of H(s). Further, the parameter s has been
omitted to simplify the notations. Eliminating ẏ1, ẏ2 from the last equations
in the system above we obtain

ẏ1 = s−1 (D1 T1
T
ẋ − q1), ẏ2 = s−1 (D2 T2

T
ẋ − q2).(40)

Hence, system (39) can be expressed in the reduced form

(R + s−1 T1D1 T1
T

+ s−1 T2D2 T2
T
) ẋ = p,(41)

where

p := p1(s) + p2(s) with pk(s) := s−1 Tk qk, k = 1, 2.(42)

With the definitions above we have

p1(s) =
∑

i∈I0

s−2 ψ′i

(
gi(x(s))

s

)
gi(x(s))∇gi(x(s)

p2(s) =
∑

i6∈I0

s−2 ψ′i

(
gi(x(s))

s

)
gi(x(s))∇gi(x(s)).
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First, we study the behavior of ‖p2(s)‖ for the limit s → 0+. The condition
ψ′i(ρ) = O(|ρ|−2) for ρ → −∞, the convergence x(s) → x∗ and the continu-
ous differentiability of the constraint functions gi guarantee that a constant
c0 > 0 and some s0 > 0 exist with

‖p2(s)‖ = ‖T2s
−1q2‖ ≤ c0, ∀s ∈ (0, s0].(43)

By the same arguments we obtain the boundedness of ‖s−1T2D2T
T
2 ‖ for

s → 0+. So we may select s0, c0 > 0 such that also holds

‖s−1T2D2T
T
2 ‖ ≤ c0, ∀s ∈ (0, s0].(44)

Now, we notice that the diagonal matrices D1 can be expressed by

D1 = diag
(
ψ′i(ψ

−1
i (yi(s)))

)
i∈I0

.

Due to y(s) → y∗, the continuity of ψ−1 ◦ ψ, property (vi) and the strict
complementarity some c > 0 exists with

c ‖z‖2 ≤ zT D1z, ∀z ∈ IRn, s ∈ (0, s0].(45)

This together with the supposed second order sufficient optimality condition,
the continuity of the second order derivatives of the objective f and of the
constraint functions gi, i = 1, . . . , m and (x(s), y(s)) → (x∗, y∗) for s → 0+
guarantee that some β, γ, γ̄ > 0 and s1 ∈ (0, s0] exist such that

γ‖z‖2 ≤ zT (R + s−1T2D2T
T
2 + βT1D1T

T
1 )z ≤ γ̄‖z‖2, ∀z ∈ IRn, s ∈ (0, s0]

Let denote Q := R + s−1T2D2T
T
2 + βT1D1T

T
1 and P := T1D

1/2
1 . Then the

linear system (41) can be expressed by

(Q + (s−1 − β)PP T ) ẋ = s−1PD
−1/2
1 q1 + p2

The vector p2 is bounded for s → 0+, as shown above, and also D
−1/2
1 q1 is

bounded for s → 0+. Thus, Lemma 1 provides some c > 0 with

‖ẋ(s)‖ ≤ c, ∀s ∈ (0, s0].

By the arguments above, the remaining estimate for ‖ẏ‖ in the limit s → 0+
follows from here and from the representation (40).
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Theorem 1 extends the classical result of [9, 14] concerning differentiable
paths to a much wider class of penalty/barrier embeddings. Differentiability
properties of the primal-dual path play an important role in interior point
methods (cf. [15, 18]), in particular in connection with logarithmic barriers,
as well as in other primal-dual embeddings (cf. [19]).
As an immediate consequence of Theorem 1 we obtain

Corollary 1. There exist some constants s0 ∈ (0, s̄] and c
L

> 0 such that

‖x(s)− x(t)‖ ≤ c
L
|s− t|,

‖y(s)− y(t)‖ ≤ c
L
|s− t|,



 ∀ s, t ∈ [0, s0].(46)

3 Approximation of the primal-dual path

Let x ∈ B denote some approximation of the solution x(s) of (14). Related
to x ∈ B we define vectors u(x, s), v(x, s) ∈ IRm

+ by

ui(x, s) := ψi(gi(x)/s),

vi(x, s) := s−1 ψ′i(gi(x)/s),

}
∀ s > 0, i = 1, . . . , m,(47)

respectively. In particular, we have y(s) = u(x(s), s) which approximates
the dual multiplier y∗ for s → 0+.

To simplify our further investigations in the sequel we restrict ourselves
to linearly constrained optimization problems, i.e. we assume the constraint
functions gi to have a representation

gi(x) = aT
i x− bi, i = 1, . . . , m

with vectors ai ∈ IRn and reals bi, i = 1, . . . , m. In particular, this assump-
tion implies ∇gi(x) = ai and ∇2gi(x) = 0, i = 1, . . . ,m.

Next, we study the local behavior of Newton’s method applied to de-
termine elements of the primal path x(·). One step of Newton’s method
starting from x ∈ B, defines a new approximate x̃ of x(s) as solution of the
linear system

∇f(x) +
m∑

i=1

ui(x, s) ai +

(
∇2f(x) +

m∑

i=1

vi(x, s) ai a
T
i

)
(x̃− x) = 0.(48)

As shown in the proof of Theorem 1, the system matrix is regular for x =
x(s) provided the penalty/barrier parameter s > 0 is sufficiently small.
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By continuous perturbation arguments this remains true close to the primal
path. So, the linear system (48) has a unique solution x̃ ∈ IRn if ‖x− x(s)‖
and s > 0 are sufficiently small.

However, the nature of penalty/barrier methods makes the auxiliary
problems (14) ill-conditioned for small parameters s > 0 (cf. [16, 17, 18]).
In particular, problem (14) is asymptotically incorrect for s → 0 + . This
shrinks the radius of convergence of Newton’s method to zero when s > 0
tends to the wanted limit zero. Hence, for path-following Newton methods it
is essential to derive bounds for ‖x−x(s)‖ which guarantee that x̃ ∈ B and
to establish an estimate of ‖x̃ − x(s)‖ for the new iterate x̃. For any fixed
penalty/barrier parameter s > 0 Newton’s method is locally quadratically
convergent. Hence, some functions δ(·), ρ(·) : IR++ → IR++ exist such that

‖x̃− x(s)‖ ≤ δ(s) ‖x− x(s)‖2, ∀x ∈ B, ‖x− x(s)‖ ≤ ρ(s).(49)

These functions δ, ρ can be constructed by means of

Theorem 2. For sufficiently small s > 0 and x ∈ B the linear system (48)
possesses a unique solution x̃ ∈ IRn and some constants s0, cδ, cρ > 0 exist
such that

x ∈ B, s ∈ (0, s0],

‖x− x(s)‖ ≤ cρ s,

}
=⇒

{
x, x̃ ∈ B,

‖x̃− x(s)‖ ≤ cδ s−1 ‖x− x(s)‖2.
(50)

The proof of this theorem rests similarly to [1] on the convergence anal-
ysis of Newton’s method for asymptotically singular problems as occur in
penalty/barrier methods (see also [5, 7, 8, 17]). Here we sketch only the
essential steps and refer for further details to [1].

Newton’s equation together with (14) yields
(
∇2f(x) +

m∑

i=1

vi(x, s)aia
T
i

)
(x̃−x(s)) =∇f(x(s))−∇f(x)−∇2f(x)(x(s)−x)

+
m∑

i=1

(
(ui(x(s), s)− ui(x, s)) ai − vi(x, s)aia

T
i (x(s)− x)

)
.(51)

By Taylor’s formula we have

∇f(x(s))−∇f(x)−∇2f(x) (x(s)− x)

=
∫ 1

0
(∇2f(x + τ(x(s)− x))−∇2f(x)) dτ (x(s)− x).

(52)
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Taking into account ∇x ui(x, s) = vi(x, s)ai similarly it holds

(ui(x(s), s)− ui(x, s))ai − vi(x, s) ai a
T
i (x(s)− x)

=
∫ 1

0
(vi(x + τ(x(s)− x), s)− vi(x, s)) dτ ai a

T
i (x(s)− x),

(53)

i = 1, . . . ,m. Next, we split the right hand side of (51) into three components
rj ∈ IRn, j = 1, 2, 3, according to

r1 :=
∫ 1

0
(∇2f(x + τ(x(s)− x))−∇2f(x)) dτ (x(s)− x),

r2 :=
∑

i 6∈I0

(∫ 1

0
[vi(x, s)− vi(x + τ(x(s)− x), s)] dτ

)
ai a

T
i (x− x(s)),

r3 :=
∑

i∈I0

(∫ 1

0
[vi(x, s)− vi(x + τ(x(s)− x), s)] dτ

)
ai a

T
i (x− x(s)),

and we estimate the solutions dj of the linear systems
(
∇2f(x) +

m∑

i=1

vi(x, s) ai a
T
i

)
dj = rj , j = 1, 2, 3,(54)

separately. We notice that (54) behaves well for the first two cases r1 and
r2 while the norm of the last vector r3 tends to infinity as s → 0+. How-
ever, this is partially compensated by growing components vi(x, s) which
contribute to the system matrix in (54). Lemma 1 provides an adequate
tool for this task. For further details of the estimations of the different parts
we refer to [1, 11]. A similar approach of separating the right hand side of
degenerate linear systems, but using different tools, can be found in [17].

Remark 2. The case of nonlinear constraints is considered in [18] for the
logarithmic barrier technique. The study of the occurring ill-conditioned
linear systems in Newton linearizations require to estimate a further term
arising from the varying gradients.

A simple example given in [11] shows that the order of the bounds given
in Theorem 2 cannot be improved. Analysis of barrier methods by self-
concordance properties (cf. [10, 15, 16]) cover this fact by using norms
which are implicitly dependent on the parameter s > 0 and deteriorate for
s → 0+.
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4 Path-following Newton method

The convergence estimates for Newton’s method given above together with
the Lipschitz continuity of the path x(·) lay the foundation for a path-
following algorithm with only fixed number of Newton steps at each level sk

of the penalty/barrier parameter s > 0 in system (14).

Path-following Newton algorithm

Step 1. Select parameters ε, ρ > 0, ν ∈ (0, 1) and +s0 > 0.
Select x0 ∈ B such that

‖x0 − x(s0)‖ ≤ ρ s0.(55)

Set k := 0.

Step 2. Determine dk ∈ IRn as solution of the linear system

∇f(xk) +
m∑

i=1

ui(xk, sk) ai +

(
∇2f(xk) +

m∑

i=1

vi(xk, sk) ai a
T
i

)
dk = 0(56)

and define xk+1 := xk + dk.

Step 3. If sk ≤ ε then stop. Otherwise set sk+1 := ν sk and go to Step 2
with k := k + 1.

Remark 3. In step 1 of the above algorithm a rather good approxima-
tion x0 ∈ B of the solution x(s0) of the auxiliary penalty/barrier problem
is required. However, for relatively large parameters s0 > 0 the radius of
convergence of Newton’s method, as a rule, is large enough to enable a deter-
mination of x0 by Newton’s method itself. In addition, damping strategies
should be included to stabilize further the overall convergence of Newton’s
method.

Theorem 3. If s0 > 0, ρ > 0 are sufficiently small and if the parameter
ν ∈ (0, 1) is selected such that

cδ ν−2 ( ρ + cL (1− ν))2 ≤ ρ,(57)

then the given path-following Newton algorithm generates iterates xk ∈ B,
k = 1, 2, . . . , which satisfy



24 C. Grossmann

‖xk − x(sk)‖ ≤ ρ sk, k = 0, 1, . . . .(58)

Furthermore, the algorithm terminates after at most k∗ := dln(ε/s0)/ ln(ν)e
steps, where dte denotes the smallest natural number greater or equal t, and
it holds

‖xk∗ − x∗‖ ≤ (cL + ρ) sk∗ .(59)

Proof. We show (58) by induction.

For k = 0 this inequality holds according to (55). Let it be true for some
index k ≥ 0. Since 0 < ρ ≤ cρ and sk ≤ s0, Theorem 2 yields xk+1 ∈ B and

‖xk+1 − x(sk)‖
C(xk,sk)

≤ cδ s−1
k ‖xk − x(sk)‖2

C(xk,sk)
≤ cδ δ

2
ρ2 sk.

The triangle inequality and Corollary 1 imply

‖xk+1 − x(sk+1)‖ ≤ ‖xk+1 − x(sk)‖ + ‖x(sk)− x(sk+1)‖
≤ δ−1 ‖xk+1 − x(sk)‖

C(xk,sk)
+ ‖x(sk)− x(sk+1)‖

≤ cδ δ−1 δ
2
ρ2sk + cL(sk − sk+1)

= ν−1 (δ−1 δ
2
cδρ

2 + cL(1− ν)) sk+1 ≤ ρ sk+1.

This completes the induction.
Since sk = νk s0, we have sk ≤ ε for any k ≥ ln(ε/s0)/ ln(ν). Finally,
Corollary 1 and the local Lipschitz continuity of f result in

0 ≤ f(x(s))− f(x∗) ≤ p s

together with (58) and Corollary 1 we complete proof.

Remark 4. We notice that under the made assumption the existence of
some µ ∈ (0, 1) which satisfies (57) can be shown (see [11]). However, a
drawback of the considered method is that only a fixed multiplier µ ∈ (0, 1)
is applied to generate the parameter sequence {sk}. Further acceleration
may be achieved by chosing an appropriate sequence {µk} ⊂ (0, 1) instead
of one fixed parameter µ ∈ (0, 1).
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Remark 5. To improve stability properties the given approach can be over-
laid by saddle point methods (cf. [2, 3]) as well as by augmented Lagrangian
techniques (cf. [12]). The obtained approximations vi(xk, sk) of Lagrangian
multipliers y∗i may be efficiently used to speed up convergence as well as to
scale automatically the constraints.
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