ArticleOriginal scientific text

Title

Holomorph of generalized Bol loops II

Authors 1, 2

Affiliations

  1. Department of Mathematics, Faculty of Science, Obafemi Awolowo University, Ile Ife 220005, Nigeria
  2. Department of Mathematics, Federal College of Education, Osiele, Abeokuta 110101, Nigeria

Abstract

The notion of the holomorph of a generalized Bol loop (GBL) is characterized afresh. The holomorph of a right inverse property loop (RIPL) is shown to be a GBL if and only if the loop is a GBL and some bijections of the loop are right (middle) regular. The holomorph of a RIPL is shown to be a GBL if and only if the loop is a GBL and some elements of the loop are right (middle) nuclear. Necessary and sufficient conditions for the holomorph of a RIPL to be a Bol loop are deduced. Some algebraic properties and commutative diagrams are established for a RIPL whose holomorph is a GBL.

Keywords

generalized Bol loop, holomorph of a loop

Bibliography

  1. J.O. Adeniran, The Study of Properties of Certain Class of Loops via their Bryant-Schneider Group (Ph.D. thesis, University of Agriculture, Abeokuta, 2002).
  2. J.O. Adeniran, On Generalised Bol loop Identity and Related Identities (M.Sc. thesis, Obafemi Awolowo University, Ile-Ife, 1997).
  3. J.O. Adeniran, On holomorphic theory of a class of left Bol loops, Scientific Annal of A.I.I Cuza Univ. 51 (2005) 23-28.
  4. J.O. Adeniran and S.A. Akinleye, On some loops satisfying the generalised Bol identity, Nig. Jour. Sc. 35 (2001) 101-107.
  5. J.O. Adeniran, T.G. Jaiyeola and K.A. Idowu, Holomorph of generalized Bol loops, Novi Sad Journal of Mathematics 44 (2014) 37-51.
  6. J.O. Adeniran and A.R.T. Solarin, A note on automorphic inverse property loops, Zbornik Radfova, Coll. of Sci. papers 20 (1997) 47-52.
  7. J.O. Adeniran and A.R.T. Solarin, A note on generalised Bol Identity, Scientific Annal of A.I.I Cuza Univ. 45 (1999) 19-26.
  8. N. Ajmal, A generalisation of Bol loops, Ann. Soc. Sci. Bruxelles Ser. 1 92 (1978) 241-248.
  9. V. Belousov, The Foundations of the Theory of Quasigroups and Loops (Moscow, Nauka (Russian), 1967).
  10. W. Blaschke and G. Bol, Geometric der Gewebe (Springer Verlags, 1938).
  11. G. Bol, Gewebe and Gruppen, Math. Ann. 144 (1937) 414-431.
  12. R.H. Bruck, Contributions to the theory of Loops, Trans. Amer. Soc. 55 (1944) 245-354. doi: 10.1090/s0002-9947-1946-0017288-3.
  13. R.H. Bruck, A survey of binary systems (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1971). doi: 10.1007/978-3-662-43119-1.
  14. R.H. Bruck and L.J. Paige, Loops whose inner mappings are automorphisms, The Annals of Mathematics 63 (1956) 308-323. doi: 10.2307/1969612.
  15. R.P. Burn, Finite Bol loops, Math. Proc. Camb. Phil. Soc. 84 (1978) 377-385. doi: 10.1017/s0305004100055213.
  16. R.P. Burn, Finite Bol loops II, Math. Proc. Camb. Phil. Soc. 88 (1981) 445-455. doi: 10.1017/s0305004100058357.
  17. R.P. Burn, Finite Bol loops III, Math. Proc. Camb. Phil. Soc. 97 (1985) 219-223. doi: 10.1017/s0305004100062770.
  18. B.F. Bryant and H. Schneider, Principal loop-isotopes of quasigroups, Canad. J. Math. 18 (1966) 120-125. doi: 10.4153/cjm-1966-016-8.
  19. O. Chein and E.G. Goodaire, Bol loops with a large left nucleus, Comment. Math. Univ. Carolin. 49 (2008) 171-196.
  20. O. Chein and E.G. Goodaire, Bol loops of nilpotence class two, Canad. J. Math. 59 296-310. doi: 10.4153/cjm-2007-012-7.
  21. O. Chein and E.G. Goodaire, A new construction of Bol loops: the 'odd' case, Quasigroups and Related Systems 13 (2005) 87-98.
  22. V.O. Chiboka, The Bryant-Schneider group of an extra loop, Collection of Scientific papers of the Faculty of Science, Kragujevac 18 (1996) 9-20.
  23. V.O. Chiboka and A.R.T. Solarin, Holomorphs of conjugacy closed loops, Scientific Annals of Al.I. Cuza. Univ. 37 (1991) 277-284.
  24. T. Foguel, M.K. Kinyon and J.D. Phillips, On twisted subgroups and Bol loops of odd order, Rocky Mountain J. Math. 36 (2006) 183-212. doi: 10.1216/rmjm/1181069494.
  25. E.D. Huthnance Jr., A theory of generalised Moufang loops (Ph.D. thesis, Georgia Institute of Technology, 1968).
  26. T.G. Jaiyeola, A study of new concepts in smarandache quasigroups and loops (ProQuest Information and Learning(ILQ), Ann Arbor, USA, 2009).
  27. M.K. Kinyon and J.D. Phillips, Commutants of Bol loops of odd order, Proc. Amer. Math. Soc. 132 (2004) 617-619.
  28. M.K. Kinyon, J.D. Phillips and P. Vojtěchovský, When is the commutant of a Bol loop a subloop?, Trans. Amer. Math. Soc. 360 (2008) 2393-2408. doi: 10.1090/s0002-9947-07-04391-7.
  29. R. Moufang, Zur Struktur von Alterntivkorpern, Math. Ann. 110 (1935) 416-430.
  30. G.P. Nagy, A class of finite simple Bol loops of exponent 2, Trans. Amer. Math. Soc. 361 (2009) 5331-5343. doi: 10.1090/s0002-9947-09-04646-7.
  31. G.P. Nagy, A class of simple proper Bol loop, Manuscripta Mathematica 127 (2008) 81-88. doi: 10.1007/s00229-008-0188-5.
  32. G.P. Nagy, Some remarks on simple Bol loops, Comment. Math. Univ. Carolin. 49 (2008) 259-270.
  33. D.A. Robinson, Bol loops (Ph.D thesis, University of Wisconsin, Madison, 1964).
  34. D.A. Robinson, Holomorphic theory of extra loops, Publ. Math. Debrecen 18 (1971) 59-64.
  35. D.A. Robinson, The Bryant-Schneider group of a loop, Extract Des Ann. De la Sociiét é Sci. De Brucellaes 94 (1980) 69-81.
  36. B.L. Sharma, Left loops which Satisfy the left Bol identity, Proc. Amer. Math. Soc 61 (1976) 189-195. doi: 10.1090/s0002-9939-1976-0422480-4.
  37. B.L. Sharma, Left Loops which satisfy the left Bol identity (II), Ann. Soc. Sci. Bruxelles, Sér. I 91 (1977) 69-78.
  38. B.L. Sharma and L.V. Sabinin L.V., On the Algebraic properties of half Bol Loops, Ann. Soc. Sci. Bruxelles Sér. I 93 (1979) 227-240.
  39. B.L. Sharma and L.V. Sabinin, On the existence of Half Bol loops, Scientific Annal of A.I.I Cuza Univ. 22 (1976) 147-148.
  40. A.R.T. Solarin and B.L. Sharma, On the Construction of Bol loops, Scientific Annal of A.I.I Cuza Univ. 27 (1981) 13-17.
  41. A.R.T. Solarin and B.L. Sharma, Some examples of Bol loops, Acta Carol, Math. and Phys. 25 (1984) 59-68.
  42. A.R.T. Solarin and B.L. Sharma, On the Construction of Bol loops II, Scientific Annal of A.I.I Cuza Univ. 30 (1984) 7-14.
  43. A.R.T. Solarin, Characterization of Bol loops of small orders (Ph.D. Dissertation, Universiy of Ife, 1986).
  44. A.R.T. Solarin, On the Identities of Bol Moufang Type, Kyungpook Math. 28 (1988) 51-62.
Pages:
59-78
Main language of publication
English
Received
2014-11-19
Accepted
2015-01-10
Published
2015
Exact and natural sciences