PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 35 | 1 | 79-95
Tytuł artykułu

Semigroups derived from (Γ,n)-semihypergroups and T-functor

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of this paper is to introduce the concept of (Γ,n)-semihypergroups as a generalization of hypergroups, as a generalization of n-ary hypergroups and obtain an exact covariant functor between the category (Γ,n)-semihypergrous and the category semigroups. Moreover, we introduce and study complete part. Finally, we obtain some new results and some fundamental theorems in this respect.
Kategorie tematyczne
Rocznik
Tom
35
Numer
1
Strony
79-95
Opis fizyczny
Daty
wydano
2015
otrzymano
2015-01-22
poprawiono
2015-02-25
Twórcy
  • Department of Mathematics, Hormozgan University, Bandar Abbas, Iran
Bibliografia
  • [1] W.E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math. 18 (3) (1966) 411-422. doi: 10.2140/pjm.1966.18.411
  • [2] C. Berge, Graphes et Hypergraphes (Dunod, Paris, 1970).
  • [3] P. Corsini, Prolegomena of Hypergroup Theory, Second Edition (Aviani Editore, 1993).
  • [4] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics, Kluwer Academic Publishers (Dordrecht, 2003). doi: 10.1007/978-1-4757-3714-1
  • [5] S.O. Dehkordi and B. Davvaz, A Strong Regular Relation on Γ-Semihyperrings, J. Sci. I.R. Iran. 22 (3) (2011) 257-266.
  • [6] S.O. Dehkordi and B. Davvaz, Γ-semihyperrings: Approximations and rough ideals, Bull. Malays. Math. Sci. Soc. 35 (2) (2012) 1035-1047.
  • [7] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications (International Academic Press USA, 2007).
  • [8] B. Davvaz and T. Vougiouklis, n-ary hypergroups, Iran. J. Sci. Technol. Trans. A 30 (A2) (2006) 165-174. doi: 10.1080/00927870802466835
  • [9] B. Davvaz, W.A. Dudek and T. Vougiouklis, A generalization of n-ary algebraic systems, Comm. Algebra 37 (2009) 1248-1263. doi: 10.1007/BF01180515
  • [10] W. Dörnte, Unterschungen uber einen verallgemeinerten gruppenbegriff, Math. Z. 29 (1929) 1-19. doi: 10.1007/BF01180515
  • [11] W.A. Dudek and K. Glazek, Around the Hosszu Gluskin theorem for n-ary groups, Discrete Math. 308 (2008) 4861-4876. doi: 10.1016/j.disc.2007.09.005
  • [12] W. A. Dudek and I. Grozdzinska On ideals in regular n-semigroups, Mat. Bilten 29 (1980), 29-30.
  • [13] D. Heidari, S.O. Dehkordi and B. Davvaz, Γ-Semihypergroups and their properties, U.P.B. Sci. Bull. (A) 72 (2010) 197-210.
  • [14] S. Kyuno, On prime Γ-rings, Pacific J. Math. 75 (1) (1978) 185-190. doi: 10.2140/pjm.1978.75.185
  • [15] J. Luh, On the theory of simple Γ-rings, Michigan Math. J. 16 (1969) 65-75. doi: 10.1307/mmj/1029000167
  • [16] F. Marty, Sur une generalization de la notion de group, 8th Congres Math. Scandinaves (1934), 45-49.
  • [17] M.K. Sen, On Γ-semigroups, Proc. of the Int. Conf. on Algebra and it's Appl. (1981) 301-308. New York, Decker Publication.
  • [18] M.K. Sen and N.K. Saha, On Γ-semigroup, I. Bull. Cal. Math. Soc. 78 (1986) 180-186.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1231
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.