Non-deterministic linear hypersubstitutions

Nareupanat Lekkoksung and Prakit Jampachon

Department of Mathematics, Faculty of Science
Khon Kaen University, Khon Kaen
40002, Thailand

e-mail: n.lekkoksung@kkumail.com
prajam@kku.ac.th

Abstract

A non-deterministic hypersubstitution maps operation symbols to sets of terms of the corresponding arity. A non-deterministic hypersubstitution of type τ is said to be linear if it maps any operation symbol to a set of linear terms of the corresponding arity. We show that the extension of non-deterministic linear hypersubstitutions of type τ map sets of linear terms to sets of linear terms. As a consequence, the collection of all non-deterministic linear hypersubstitutions forms a monoid. Non-deterministic linear hypersubstitutions can be applied to identities and to algebras of type τ.

Keywords: linear term, non-deterministic linear hypersubstitution.

2010 Mathematics Subject Classification: 08B15, 08B25.

1. Introduction

In 2008, K. Denecke, P. Glubudom and J. Koppitz [3] studied non-deterministic hypersubstitutions and considered the extensions of such mappings. They also showed that the set of all non-deterministic hypersubstitutions forms a monoid under a certain binary operation.

The concept of linear terms has a long history as old as the concept of terms. In 2012, M. Couceiro and E. Lehtonen [2] gave a sufficient and necessary condition that a set of operations is the set of linear term operations of some algebra.

In this paper, we define non-deterministic linear hypersubstitutions and we show that the set of all non-deterministic linear hypersubstitutions forms a monoid. Let $n \geq 1$ be a natural number. Let $X_n = \{x_1, \ldots, x_n\}$ be an n-element set. The set X_n is called an alphabet and its elements are called variables. Let
\{f_i : i \in I\} be the set of operation symbols, indexed by the set \(I\). The sets \(X_n\) and \(\{f_i : i \in I\}\) have to be disjoint. To every operation symbol \(f_i\), we assign a natural number \(n_i \geq 1\), called the arity of \(f_i\). As in the definition of algebra, the sequence \(\tau = (n_i)_{i \in I}\) of all the arities is called the type. With this notation for operation symbols and variables, we can define the terms of type \(\tau\), (see also [5]).

The \(n\)-ary terms of type \(\tau\) are defined in the following inductive way:

(i) Every variable \(x_i \in X_n\) is an \(n\)-ary term.

(ii) If \(t_1, \ldots, t_{n_i}\) are \(n\)-ary terms and \(f_i\) is an \(n_i\)-ary operation symbol, then \(f_i(t_1, \ldots, t_{n_i})\) is an \(n\)-ary term.

(iii) The set \(W_\tau(X_n) = W_\tau(x_1, \ldots, x_n)\) of all \(n\)-ary terms is the smallest set which contains \(x_1, \ldots, x_n\) and is closed under finite application of (ii).

We denote by \(W_\tau(X)\) the set of all terms of type \(\tau\) over the countably infinite alphabet \(X\), that is,

\[
W_\tau(X) := \bigcup_{n=1}^{\infty} W_\tau(X_n).
\]

Let \(t\) be a term. We denote the set of variables occurring in the term \(t\) by \(\text{var}(t)\).

A term in which each variable occurs at most once, is said to be linear. For a formal definition of \(n\)-ary linear terms we replace condition (ii) in the definition of terms by a slightly different condition.

Definition [2]. An \(n\)-ary linear term of type \(\tau\) is defined in the following inductive way:

(i) For any \(j \in \{1, \ldots, n\}\), \(x_j \in X_n\) is an \(n\)-ary linear term (of type \(\tau\)).

(ii) If \(t_1, \ldots, t_{n_i}\) are \(n\)-ary linear terms and if \(\text{var}(t_j) \cap \text{var}(t_k) = \emptyset\) for all \(1 \leq j < k \leq n_i\), then \(f_i(t_1, \ldots, t_{n_i})\) is an \(n\)-ary linear term.

(iii) The set \(W_\tau^\text{lin}(X_n)\) of all \(n\)-ary linear terms is the smallest set which contains \(x_1, \ldots, x_n\) and is closed under finite application of (ii).

The set of all linear terms of type \(\tau\) over the countably infinite alphabet \(X\) is defined by

\[
W_\tau^\text{lin}(X) := \bigcup_{n \geq 1} W_\tau^\text{lin}(X_n).
\]

The set \(W_\tau(X)\) of all terms of type \(\tau\) is closed under substitution. This is not true for linear terms as the following example shows: Let \(\tau = (2)\) and let \(f\) be a binary operation symbol. Then \(f(x_1, x_2)\) and \(f(x_2, x_1)\) are linear, but if we substitute
f(x_1, x_2) for x_1 and f(x_2, x_1) for x_2 in f(x_1, x_2), we obtain f(f(x_1, x_2), f(x_2, x_1)), which is not a linear.

One of the most interesting operations on terms is the superposition. Let \(W_\tau(X_n) \) and \(W_\tau(X_m) \) be the set of all \(n \)-ary and \(m \)-ary terms, respectively. Then the superposition

\[
S^n_m : W_\tau(X_n) \times (W_\tau(X_m))^n \to W_\tau(X_m)
\]
is defined inductively as follows:

(i) \(S^n_m(x_j, t_1, \ldots, t_n) := t_j, x_j \in X_n \) and \(t_i \in W_\tau(X_m) \).

(ii) \(S^n_m(f_i(s_1, \ldots, s_{m_i}), t_1, \ldots, t_{n_i}) := f_i(S^n_m(s_1, t_1, \ldots, t_{n_i}), \ldots, S^n_m(s_{n_i}, t_1, \ldots, t_{n_i})) \).

We can extend the superposition operation \(S^n_m \) to sets of terms by the following:

Let \(m, n \) be natural numbers. We define

\[
\hat{S}^n_m : \mathcal{P}(W_\tau(X_n)) \times (\mathcal{P}(W_\tau(X_m)))^n \to \mathcal{P}(W_\tau(X_m))
\]
inductively as follows. Let \(B \in \mathcal{P}(W_\tau(X_n)), B_1, \ldots, B_n \in \mathcal{P}(W_\tau(X_m)) \).

(i) If \(B = \{x_j\} \) for \(1 \leq j \leq n \), then \(\hat{S}^n_m(\{x_j\}, B_1, \ldots, B_n) := B_j \).

(ii) If \(B = \{f_i(t_1, \ldots, t_{n_i})\} \) and if we suppose that the sets \(\hat{S}^n_m(\{t_j\}, B_1, \ldots, B_n) \) for \(1 \leq j \leq n_i \) are already defined, then

\[
\hat{S}^n_m(\{f_i(t_1, \ldots, t_{n_i})\}, B_1, \ldots, B_n) := \{f_i(r_1, \ldots, r_{n_i}) : r_j \in \hat{S}^n_m(\{t_j\}, B_1, \ldots, B_n), 1 \leq j \leq n_i\}.
\]

(iii) If \(B \) is an arbitrary non-empty subset of \(W_\tau(X_n) \), we define

\[
\hat{S}^n_m(B, B_1, \ldots, B_n) := \bigcup_{b \in B} \hat{S}^n_m(\{b\}, B_1, \ldots, B_n).
\]

If one of the sets \(B, B_1, \ldots, B_n \) is empty, we define \(\hat{S}^n_m(B, B_1, \ldots, B_n) = \emptyset \).

Let \(\tau = (\tau_i)_{i \in I} \) be a type and let \((f_i)_{i \in I} \) be an indexed set of operation symbols of type \(\tau \). Any mapping

\[
\sigma : \{f_i : i \in I\} \to \mathcal{P}(W_\tau(X))
\]
with \(\sigma(f_i) \subseteq W_\tau(X_n) \) for \(i \in I \) is called a non-deterministic hypersubstitution of type \(\tau \) [3]. For short we write non-deterministic hypersubstitution as nd-hypersubstitution. Every nd-hypersubstitution \(\sigma \) of type \(\tau \) induces a mapping \(\hat{\sigma} : \mathcal{P}(W_\tau(X)) \to \mathcal{P}(W_\tau(X)) \) by the following inductive definition [3]:

(i) \(\hat{\sigma}[\emptyset] := \emptyset \),
(ii) $\hat{\sigma}[\{x\}] := \{x\}$ for every variable $x \in X$.

(iii) For $t = f_i(t_1, \ldots, t_{n_i}) \in W_\tau(X)$ we set

$$\hat{\sigma}[\{f_i(t_1, \ldots, t_{n_i})\}] := \hat{\sigma}^n_m(\sigma(f_i), \hat{\sigma}[\{t_1\}], \ldots, \hat{\sigma}[\{t_{n_i}\}])$$

if we inductively assume that $\hat{\sigma}[\{t_j\}], 1 \leq j \leq n_i$ are already defined. Here n_i is the arity of f_i.

(iv) $\hat{\sigma}[B] := \bigcup \{\hat{\sigma}[\{t\}] : t \in B \subseteq W_\tau(X)\}$.

We denote by $Hyp_{nd}(\tau)$ the set of all non-deterministic hypersubstitutions of type τ.

In [3], the authors used the mapping $\hat{\sigma}$ for a nd-hypersubstitution σ on the set $Hyp_{nd}(\tau)$ to define a binary operation

$$\circ_{nd} : Hyp_{nd}(\tau) \times Hyp_{nd}(\tau) \to Hyp_{nd}(\tau)$$

by $\sigma_1 \circ_{nd} \sigma_2 := \hat{\sigma}_1 \circ \sigma_2$ for all $\sigma_1, \sigma_2 \in Hyp_{nd}(\tau)$. The nd-hypersubstitution σ_{id} with $\sigma_{id}(f_i) := \{f_i(x_1, \ldots, x_{n_i})\}$, for all $i \in I$, is an identity element. They have shown that the algebra $(Hyp_{nd}(\tau); \circ_{nd}, \sigma_{id})$ is a monoid.

2. Non-deterministic linear hypersubstitutions

Non-deterministic linear hypersubstitution (for short, nd-linear hypersubstitution) map operation symbols to sets of linear terms of the corresponding arity.

Formally, we define nd-linear hypersubstitutions in the following way:

Definition. A non-deterministic linear hypersubstitution of type τ is a mapping

$$\sigma : \{f_i \mid i \in I\} \to \mathcal{P}(W_\tau^{lin}(X))$$

with $\sigma(f_i) \subseteq W_\tau^{lin}(X_{n_i})$ for $i \in I$.

We denote $Hyp_{nd}^{lin}(\tau)$ by the set of all non-deterministic linear hypersubstitutions.

For the extension of an nd-linear hypersubstitution σ the following holds:

Lemma 1 [1]. For any linear hypersubstitution σ and any linear term t we have

$$\text{var}(t) \supseteq \text{var}(\hat{\sigma}[t]).$$

Lemma 2. For any nd-linear hypersubstitution σ and any set of linear terms T we have

$$\text{var}(T) \supseteq \text{var}(\hat{\sigma}[T]).$$
Proof. If T is a one-element set, then we will give a proof by induction on the complexity of the linear term which forms the only element of the one-element set T.

1. If $T = \{x_j\}$, where $x_j \in X$, then

$$\text{var}(T) = \text{var}(\{x_j\}) = \text{var}(\hat{\sigma}[\{x_j\}]) = \text{var}(\hat{\sigma}[T]).$$

2. If $T = \{f_i(t_1, \ldots, t_{n_i})\}$ and we assume that

$$\text{var}(\{t_j\}) \supseteq \text{var}(\hat{\sigma}[\{t_j\}]),$$

for all $1 \leq j \leq n_i$, then

$$\text{var}(T) = \text{var}(\{f_i(t_1, \ldots, t_{n_i})\}) = \bigcup_{j=1}^{n_i} \text{var}(\{t_j\}) \supseteq \bigcup_{j=1}^{n_i} \text{var}(\hat{\sigma}[\{t_j\}]) \supseteq \text{var}(\hat{\sigma}^n(\sigma(f_i), \hat{\sigma}[\{t_1\}], \ldots, \hat{\sigma}[\{t_{n_i}\}]))) = \text{var}(\hat{\sigma}[\{f_i(t_1, \ldots, t_{n_i})\}]) = \text{var}(\hat{\sigma}[T]).$$

3. If T is an arbitrary non-empty subset of $W_{\tau}^{\text{lin}}(X)$, then

$$\text{var}(T) = \bigcup_{t \in T} \text{var}(\{t\}) \supseteq \bigcup_{t \in T} \text{var}(\hat{\sigma}[\{t\}]) = \text{var}(\bigcup_{t \in T} \hat{\sigma}[\{t\}]) = \text{var}(\hat{\sigma}[T]).$$

4. If T is the empty set, then $\emptyset = \text{var}(T) = \text{var}(\hat{\sigma}[\emptyset]) = \text{var}(\emptyset) = \emptyset$.

Therefore we have $\text{var}(T) \supseteq \text{var}(\hat{\sigma}[T])$. □
Lemma 3. For a set of linear terms of the form $T = \{f_i(t_1, \ldots, t_{n_i})\}$ and an nd-linear hypersubstitution σ we have

$$\text{var}(\hat{\sigma}[\{t_j\}]) \cap \text{var}(\hat{\sigma}[\{t_k\}]) = \emptyset$$

for all $1 \leq j < k \leq n_i$.

Proof. By the previous lemma we have $\text{var}(\{t_l\}) \supseteq \text{var}(\hat{\sigma}[\{t_l\}])$ for any $1 \leq l \leq n_i$ and thus

$$\emptyset = \text{var}(\{t_j\}) \cap \text{var}(\{t_k\}) \supseteq \text{var}(\hat{\sigma}[\{t_j\}]) \cap \text{var}(\hat{\sigma}[\{t_k\}]).$$

Therefore $\text{var}(\hat{\sigma}[\{t_j\}]) \cap \text{var}(\hat{\sigma}[\{t_k\}]) = \emptyset$.

Proposition 4. The extension of any nd-linear hypersubstitution maps non-empty sets of linear terms to non-empty sets of linear terms.

Proof. Let T be an element in $P(W_\text{lin}^\tau(X))$ and let $\sigma \in Hyp_{\text{lin}}^n(\tau)$.

1. If T is a one-element set, then we will give a proof by induction on the complexity of the linear term which forms the only element of the one-element set T.

 (a) If $T = \{x_j\}$, where $x_j \in X$, then

 $$\hat{\sigma}[T] = \hat{\sigma}[\{x_j\}] = \{x_j\},$$

 is a set of linear terms.

 (b) If $T = \{f_i(t_1, \ldots, t_{n_i})\}$, by the previous lemma we have $\text{var}(\hat{\sigma}[\{t_j\}]) \cap \text{var}(\hat{\sigma}[\{t_k\}]) = \emptyset$ for all $1 \leq j < k \leq n_i$, and if we assume that $\hat{\sigma}[\{t_1\}], \ldots, \hat{\sigma}[\{t_{n_i}\}]$ are sets of linear terms, then

 $$\hat{\sigma}[T] = \hat{\sigma}[\{f_i(t_1, \ldots, t_{n_i})\}] = \hat{\mathcal{S}}^\tau_n(\sigma(f_i), \hat{\sigma}[\{t_1\}], \ldots, \hat{\sigma}[\{t_{n_i}\}]),$$

 is a set of linear terms.

2. If T is an arbitrary non-empty subset of $W_\text{lin}^\tau(X)$, then $\hat{\sigma}[T] = \bigcup_{t \in T} \hat{\sigma}[\{t\}]$ is a non-empty set of linear terms.

Thus, the extension of an nd-linear hypersubstitution maps non-empty sets of linear terms to non-empty sets of linear terms.
Since the extension of an nd-linear hypersubstitution of type τ maps $P(W^\text{lin}_\tau(X))$ to $P(W^\text{lin}_\tau(X))$ we may define a product $\sigma_1 \circ_{nd} \sigma_2$, by

$$\sigma_1 \circ_{nd} \sigma_2 := \hat{\sigma}_1 \circ \sigma_2.$$

Here \circ is the usual composition of mappings. By the previous lemma $(\sigma_1 \circ_{nd} \sigma_2)(f_i) = \hat{\sigma}_1[\sigma_2(f_i)]$ is a set of linear terms.

From the above facts we obtain the following theorem.

Theorem 5. The set of all nd-linear hypersubstitutions is a submonoid of the set of all nd-hypersubstitution. That is, $(\text{Hyp}_{nd}^{\text{lin}}(\tau), \circ_{nd}, \sigma_{id})$ is a submonoid of the monoid $(\text{Hyp}_{nd}^{nd}(\tau), \circ_{nd}, \sigma_{id})$.

Acknowledgement

The authors would like to thank Professor Klaus Denecke and Assistant Professor Somsak Lekkoksung for their helpful suggestions and remarks in preparing this paper. Lastly, the authors are deeply grateful to the referees for the valuable suggestions.

References

Received 31 March 2015
Revised 14 April 2015