ArticleOriginal scientific text
Title
On a period of elements of pseudo-BCI-algebras
Authors 1
Affiliations
- Institute of Mathematics and Computer Science, The John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland
Abstract
The notions of a period of an element of a pseudo-BCI-algebra and a periodic pseudo-BCI-algebra are defined. Some of their properties and characterizations are given.
Keywords
pseudo-BCI-algebra, period
Bibliography
- W.A. Dudek and Y.B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008) 187-190.
- G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012) 73-90.
- G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014) 167-187.
- G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012) 461-474.
- G. Dymek and A. Kozanecka-Dymek, Pseudo-BCI-logic, Bull. Sect. Logic 42 (2013) 33-42.
- G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Proceedings of DMTCS'01: Combinatorics, Computability and Logic (Springer, London, 2001), 97-114.
- G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of The Fifth International Conference FSTA 2000 (Slovakia, February 2000), 90-92.
- G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, (Bucharest, Romania, May, 1999), 961-968.
- A. Iorgulescu, Algebras of logic as BCK algebras, Editura ASE (Bucharest, 2008).
- K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966) 26-29. doi: 10.3792/pja/1195522171
- Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006) 39-46.