ArticleOriginal scientific text

Title

Complicated BE-algebras and characterizations of ideals

Authors 1, 1

Affiliations

  1. Department of Mathematics, Faculty of Arts and Sciences, Süleyman Demirel University, 32260 Isparta, Turkey

Abstract

In this paper, using the notion of upper sets, we introduced the notions of complicated BE-Algebras and gave some related properties on complicated, self-distributive and commutative BE-algebras. In a self-distributive and complicated BE-algebra, characterizations of ideals are obtained.

Keywords

BE-algebras, complicated BE-algebras, ideals in BE-algebras

Bibliography

  1. J.C. Abbott, Sets, Lattices and Boolean Algebras (Allyn and Bacon, Boston, 1969).
  2. S.S. Ahn and K.K. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn. 68 (2) (2008) 279-285.
  3. S.S. Ahn and K.K. So, On generalized upper sets in BE-algebras, Bull. Korean Math. Soc. 46 (2) (2009) 281-287. doi: 10.4134/BKMS.2009.46.2.281
  4. S.S. Ahn, Y.H. Kim and J.M. Ko, Filters in commutative BE-algebras, Commun. Korean Math. Soc. 27 (2) (2012) 233-242. doi: 10.4134/CKMS.2012.27.2.233
  5. Q.P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ. 11 (2) (1983) 313-320.
  6. Q.P. Hu and X. Li, On proper BCH-algebras, Math. Japon. 30 (4) (1985) 659-661.
  7. J. Meng and Y.B. Jun, BCK-algebras (Kyung Moon Sa Co. Seoul-Korea, 1994).
  8. Y. Imai and K. Iseki, On axiom system of propositional calculi XIV, Proc. Japan Acad. 42 (1966) 19-22. doi: 10.3792/pja/1195522169
  9. K. Isėki and S. Tanaka, An introduction to the theory of BCK-Algebras, Math. Japon 23 (1) (1978/79) 1-26.
  10. K. Isėki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980) 125-130.
  11. Y.B. Jun, E.H. Roh and H.S. Kim, On BH-algebras, Sci. Math. Japon. 1 (3) (1998) 347-354.
  12. Y.B. Jun, Y.H. Kim and K.A. Oh, Subtraction algebras with additional conditions, Commun. Korean Math. Soc. 22 (2007) 1-7.
  13. C.B. Kim and H.S. Kim, On BM-algebras, Sci. Math. Japon 63 (3) (2006) 421-427.
  14. H.S. Kim and Y.H. Kim, On BE-algebras, Sci. Math. Japon 66 (2007) 113-116.
  15. H.S. Kim and Y.H. Yon, Dual BCK-algebra and MV-algebra, Sci. Math. Jpn. 66 (2) (2007) 247-353.
  16. J. Neggers and H.S. Kim, On d-algebras, Math. Slovaca 49 (1999) 19-26.
  17. J. Neggers, On B-algebras, Mat. Vesnik 54 (1-2) (2002) 21-29.
  18. J. Neggers, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (3) (2002) 215-219.
  19. B.M. Schein, Difference Semigroups, Comm. Algebra 20 (1992) 2153-2169. doi: 10.1080/00927879208824453
  20. A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56 (3) (2006) 301-306.
  21. A. Walendziak, On commutative BE-algebras, Sci. Math. Jpn. 69 (2) (2009) 281-284.
  22. B. Zelinka, Subtaction Semigroups, Math. Bohemica 120 (1995) 445-447.
Pages:
41-51
Main language of publication
English
Received
2014-11-11
Accepted
2015-01-10
Published
2015
Exact and natural sciences