ArticleOriginal scientific text
Title
Jordan numbers, Stirling numbers and sums of powers
Authors 1, 1, 1, 1, 1
Affiliations
- Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
Abstract
In the paper a new combinatorical interpretation of the Jordan numbers is presented. Binomial type formulae connecting both kinds of numbers mentioned in the title are given. The decomposition of the product of polynomial of variable n into the sums of kth powers of consecutive integers from 1 to n is also studied.
Keywords
Bernoulli numbers, binomial coefficients, Jordan numbers, Stirling numbers, Živković numbers
Bibliography
- Z.I. Borevich and I.R. Szafarevich, Number Theory (Nauka, Moscov, 1964, in Russian).
- L. Carlitz, Note on the numbers of Jordan and Ward, Duke Math. J. 38 (1971) 783-790. doi: 10.1215/S0012-7094-71-03894-4.
- L. Carlitz, Some numbers related to the Stirling numbers of the first and second kind, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544-576 (1976) 49-55.
- L. Carlitz, Some remarks on the Stirling numbers, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 678-715 (1980) 10-14.
- K. Dilcher, Bernoulli and Euler Polynomials, 587-600 (in F.W.I. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge Univ. Press, 2010).
- R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics (Addison-Wesley, Reading, 1994).
- K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory (Springer, 1990). doi: 10.1007/978-1-4757-1779-2.
- C. Jordan, Calculus of Finite Differences (Chelsea, New York, 1960). doi: 10.2307/2333783.
- D.E. Knuth, Johann Faulhaber and sums of powers, Math. Comp. 203 (1993) 277-294. doi: 10.2307/2152953.
- N. Nielsen, Traité élémentaire des nombers de Bernoulli (Gauthier - Villars, Paris, 1923).
- S. Rabsztyn, D. Słota and R. Wituła, Gamma and Beta Functions, Part I (Silesian Technical University Press, Gliwice, 2011, in Polish).
- J. Riordan, An Introduction to Combinatorial Analysis (John Wiley, 1958). doi: 10.1063/1.3060724.
- J. Riordan, Combinatorial Identities (Wiley, New York, 1968).
- N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences (http://oeis.org/).
- M. Živković, On a representation of Stirling's numbers of first kind, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 498-541 (1975) 217-221.