PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 34 | 2 | 167-181
Tytuł artykułu

Some properties of the zero divisor graph of a commutative ring

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let Γ(R) be the zero divisor graph for a commutative ring with identity. The k-domination number and the 2-packing number of Γ(R), where R is an Artinian ring, are computed. k-dominating sets and 2-packing sets for the zero divisor graph of the ring of Gaussian integers modulo n, Γ(ℤₙ[i]), are constructed. The center, the median, the core, as well as the automorphism group of Γ(ℤₙ[i]) are determined. Perfect zero divisor graphs Γ(R) are investigated.
Twórcy
  • Department of Mathematics, Palestine Technical University-Kadoorie, Tulkarm, West Bank, Palestine
autor
  • Department of Mathematics, Jordan University, Amman 11942 Jordan
Bibliografia
  • [1] E. Abu Osba, The Complement graph for Gaussian integers modulo n, Commun. Algebra 40 (5), (2012) 1886-1892. doi: 10.1080/00927872.2011.560588
  • [2] E. Abu Osba, S. Al-Addasi and N. Abu Jaradeh, Zero divisor graph for the ring of Gaussian integers modulo n, Commun. Algebra 36 (10) (2008) 3865-3877. doi: 10.1080/00927870802160859
  • [3] E. Abu Osba, S. Al-Addasi and B. Al-Khamaiseh, Some properties of the zero divisor graph for the ring of Gaussian integers modulo n, Glasgow J. Math. 53 (1) (2011) 391-399. doi: 10.1017/S0017089511000024
  • [4] S. Akbari and A. Mohamamadaian, On the zero divisor graph of a commutative ring, J. Algebra 274 (2004) 847-855. doi: 10.1016/S0021-8693(03)00435-6
  • [5] D.F. Anderson, M.C. Axtell and J.A. Stickles, Zero-divisor graphs in commutative rings, Commutative Algebra in Noetherian and Non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), Springer-Verlag, New York (2011), 2345.
  • [6] D.F. Anderson and A.D. Badawi, On the zero-divisor graph of a ring, Commun. Algebra 36 (2008) 3073-3092. doi: 10.1080/0092787080211088
  • [7] D.F. Anderson, A. Frazier, A. Lauve and P.S. Livingston, The zero divisor graph of a commutative ring II, Lecture notes in Pure and Appl. Math., New Yourk, Marcel Dekker 220 (2001) 61-72.
  • [8] D.F. Anderson and P.S. Livingston, The zero divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447. doi: 10.1006/jabr.1998.7840
  • [9] S. Arumugam and S. Velammal, Edge domination in graphs, Taiwanese J. Math. 2 (2) (1998) 173-179.
  • [10] V.K. Bahat and R. Raina, A note on zero divisor graph over rings, Int. J. Contemp. Math. Sci. 14 (2) (2007) 667-671.
  • [11] J. Beck, Coloring of Commutative rings, J. Algebra 116 (1988) 208-226. doi: 10.1016/0021-8693(88)90202-5
  • [12] C. Berge, Fäbung von Graphen, deren s Fäamtliche bzw. Deren ungerade Kreise starr sind, Wiss, Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe (1961) 114-115.
  • [13] G. Chartrand and L. Leśniak, Graphs and Digraphs, 2 ed., Wadsworth and Brooks (Monterey, California, 1986).
  • [14] H. Chiang-Hsieh, H. Wang and N. Smith, Commutative rings with toroidal zero-divisor graphs, Houston J. Math. 36 (1) (2010) 1-31.
  • [15] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. Math. 164 (1) (2006) 51-229. doi: 10.4007/annals.2006.164.51
  • [16] N. Cordova, C. Gholston and H. Hauser, The Structure of Zero-divisor Graphs (Sumsri, Miami University, 2005).
  • [17] M. El-Zahar and C. Pareek, Domination number of products of graphs, Ars Combin. 31 (1991) 223-227.
  • [18] M. Ghanem and K. Nazzal, On the line graph of the complement graph for the ring of Gaussian integers modulo n, Open J. Disc. Math. 2 (1) (2012) 24-34.
  • [19] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamental of Domination in Graphs (Marcel Dekker, New York, 1998).
  • [20] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics, Marcel Dekker, Inc. (New York, 1998).
  • [21] R.B. Hayward, Murky graphs, J. Combin. Theory (B) 49 (1990) 200-235.
  • [22] Ph.S. Livingston, Structure in Zero-Divisor Graphs of Commutative Rings, Masters Theses, University of Tennessee (Knoxville, 1997).
  • [23] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Disc. Math. 2 (1972) 253-267.
  • [24] T.F. Maire, Slightly triangulated graphs are perfect, Graphs Combin. 10 (1994) 263-268.
  • [25] K. Nazzal and M. Ghanem, On the line graph of the zero divisor graph for the ring of Gaussian integers modulo n, Int. J. Comb. (2012) 13 pages.
  • [26] S.P. Redmond, Central sets and Radii of the zero divisor graphs of commutative ring, Commun. Algebra 34 (2006) 2389-2401.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1222
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.