ArticleOriginal scientific text

Title

Strong quasi k-ideals and the lattice decompositions of semirings with semilattice additive reduct

Authors 1, 2

Affiliations

  1. Department of Mathematics, Visva-Bharati, Santiniketan-731235, India
  2. Department of Mathematics, Katwa College, Katwa-713130, India

Abstract

Here we introduce the notion of strong quasi k-ideals of a semiring in SL⁺ and characterize the semirings that are distributive lattices of t-k-simple(t-k-Archimedean) subsemirings by their strong quasi k-ideals. A quasi k-ideal Q is strong if it is an intersection of a left k-ideal and a right k-ideal. A semiring S in SL⁺ is a distributive lattice of t-k-simple semirings if and only if every strong quasi k-ideal is a completely semiprime k-ideal of S. Again S is a distributive lattice of t-k-Archimedean semirings if and only if √Q is a k-ideal, for every strong quasi k-ideal Q of S.

Keywords

quasi k-ideal, strong quasi k-ideal, strong quasi k-simple, t-k-simple, t-k-Archimedean

Bibliography

  1. A.K. Bhuniya and K. Jana, Bi-ideals in k-regular and intra k-regular semirings, Discuss. Math. Gen. Alg. and Appl. 31 (2011) 5-23. doi: 10.7151/dmgaa.1172.
  2. C. Donges, On quasi ideals of semirings, Int. J. Math. and Math. Sci. 17(1) (1994) 47-58. doi: 10.1155/S0161171294000086.
  3. A.K. Bhuniya and T.K. Mondal, Distributive lattice decompositions of semirings with semilattice additive reduct, Semigroup Forum 80 (2010) 293-301. doi: 10.1007/s00233-009-9205-6.
  4. A.K. Bhuniya and T.K. Mondal, On the least distributive lattice congruence on semirings, communicated.
  5. S.M. Bogdanović, M.D. Ćirić, and Ž. Lj. Popović, Semilattice Decompositions of Semigroups (University of Niš, Faculty of Economics, 2011).
  6. M. Gondran, M. Minoux, Graphs, Dioids and Semirings. New Models and Algorithms (Springer, Berlin, 2008).
  7. M. Gondran and M. Minoux, Dioids and semirings: links to fuzzy sets and other applications, Fuzzy Sets and Systems 158 (2007) 1273-1294. doi: 10.1016/j.fss.2007.01.016.
  8. J. Gunawardena, Idempotency (Cambridge Univ. Press, 1998).
  9. U. Hebisch and H.J. Weinert, Semirings: Algebric Theory and Applications in Computer Science (World Scientific, Singapore, 1998).
  10. J.M. Howie, Fundamentals in Semigroup Theory (Clarendon Press, 1995).
  11. K. Jana, Quasi-k-ideals in k-regular and intra k-regular semirings, Pure Math. Appl. 22(1) (2011) 65-74.
  12. K. Jana, k-bi-ideals and quasi k-ideals in k-Clifford and left k-Clifford semirings, Southeast Asian Bull. Math. 37 (2013) 201-210.
  13. V.N. Kolokoltsov and V.P. Maslov, Idempotent Analysis and Its Applications (Kluwer Academic, Dordrecht, 1997).
  14. G.L. Litvinov and V.P. Maslov, The Correspondence principle for idempotent calculus and some computer applications, in: Idempotency, J. Gunawardena (Ed(s)), (Cambridge Univ. Press, Cambridge, 1998) 420-443.
  15. V.P. Maslov and S.N. Samborskiĭ, Idempotent Analysis (Advances in Soviet Mathematics, Vol. 13, Amer. Math. Soc., Providence RI, 1992).
  16. M. Mohri, Semiring frameworks and algorithms for shortest distance problems, J. Autom. Lang. Comb. 7 (2002) 321-350.
  17. T.K. Mondal, Distributive lattice of t-k-Archimedean semirings, Discuss. Math. Gen. Alg. and Appl. 31 (2011) 147-158. doi: 10.7151/dmgaa.1179.
  18. T.K. Mondal and A.K. Bhuniya, Semirings which are distributive lattices of t-k-simple semirings, communicated.
  19. M.K. Sen and A.K. Bhuniya, On additive idempotent k-regular semirings, Bull. Cal. Math. Soc. 93 (2001) 371-384.
  20. O. Steinfeld, Quasi-ideals in Rings and Regular Semigroups (Akademiai Kiado, Budapest, 1978).
  21. H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 914-920. doi: 10.1090/S0002-9904-1934-06003-8.
  22. H.J. Weinert, on quasi-ideals in rings, Acta Math. Hung. 43 (1984) 85-99. doi: 10.1007/BF01951330.
Pages:
27-43
Main language of publication
English
Received
2013-04-26
Accepted
2013-10-07
Published
2014
Exact and natural sciences