ArticleOriginal scientific text

Title

An ideal-based zero-divisor graph of direct products of commutative rings

Authors 1, 1, 1

Affiliations

  1. Faculty of Mathematical Sciences, University of Guilan, P.O. Box 1914 Rasht, Iran

Abstract

In this paper, specifically, we look at the preservation of the diameter and girth of the zero-divisor graph with respect to an ideal of a commutative ring when extending to a finite direct product of commutative rings.

Keywords

zero-divisor graph, ideal-based, diameter, girth, finite direct product

Bibliography

  1. D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra. 217 (1999) 434-447. doi: 10.1006/jabr.1998.7840.
  2. M. Axtell, J. Stickles and J. Warfel, Zero-divisor graphs of direct products of commutative rings, Houston J. Math. 32 (2006) 985-994.
  3. D.F. Anderson, M.C. Axtell and J.A. Stickles Jr., Zero-divisor graphs in commutative rings in commutative Algebra-Noetherian and Non-Noetherian Perspectives (M. Fontana, S.E. Kabbaj, B. Olberding, I. Swanson, Eds), (Springer-Verlag, New York, 2011) 23-45. doi: 10.1007/978-1-4419-6990-3_2
  4. D.F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008) 3073-3092. doi: 10.1080/00927870802110888.
  5. I. Beck, Coloring of commutative rings, J. Algebra. 116 (1998) 208-226. doi: 10.1016/0021-8693(88)90202-5.
  6. S. Ebrahimi Atani and M. Shajari Kohan, On L-ideal-based L-zero-divisor graphs, Discuss. Math. Gen. Algebra Appl. 31 (2011) 127-145. doi: 10.7151/dmgaa.1178.
  7. S. Ebrahimi Atani and M. Shajari Kohan, L-zero-divisor graphs of direct products of L-commutative rings, Discuss. Math. Gen. Algebra Appl. 31 (2011) 159-174. doi: 10.7151/dmgaa.1180.
  8. S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003) 4425-4443. doi: 10.1081/AGB-120022801.
Pages:
45-53
Main language of publication
English
Received
2013-08-09
Accepted
2013-11-08
Published
2014
Exact and natural sciences