PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 34 | 1 | 125-138
Tytuł artykułu

Generalized derivations in prime rings and Banach algebras

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let R be a prime ring with extended centroid C, F a generalized derivation of R and n ≥ 1, m≥ 1 fixed integers. In this paper we study the situations:
1. $(F(x∘y))^m = (x∘y)ⁿ$ for all x,y ∈ I, where I is a nonzero ideal of R;
2. (F(x∘y))ⁿ=(x∘y)ⁿ for all x,y ∈ I, where I is a nonzero right ideal of R.
Moreover, we also investigate the situation in semiprime rings and Banach algebras.
Twórcy
autor
  • Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
  • Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, India
autor
  • Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
Bibliografia
  • [1] N. Argac and H.G. Inceboz, Derivations of prime and semiprime rings, J. Korean Math. Soc. 46 (2009) 997-1005. doi: 10.4134/JKMS.2009.46.5.997.
  • [2] M. Ashraf and N. Rehman, On commutativity of rings with derivations, Result. Math. 42 (2002) 3-8. doi: 10.1007/BF03323547.
  • [3] K.I. Beidar, Rings of quotients of semiprime rings, Vestnik Moskov. Univ. Ser I Math. Meh. (Engl. Transl:. Moscow Univ. Math. Bull.) 33 (1978) 36-42.
  • [4] M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990) 7-16. doi: 10.1090/S0002-9939-1990-1028284-3.
  • [5] M. Brešar, On the distance of the composition of the two derivations to be the generalized derivations, Glasgow Math. J. 33 (1991) 89-93. doi: 10.1017/S0017089500008077.
  • [6] C.M. Chang, Power central values of derivations on multilinear polynomials, Taiwanese J. Math. 7 (2003) 329-338.
  • [7] C.L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988) 723-728. doi: 10.1090/S0002-9939-1988-0947646-4.
  • [8] M.N. Daif and H.E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. & Math. Sci. 15 (1992) 205-206. doi: 10.1155/S0161171292000255.
  • [9] V. De Filippis and S. Huang, Generalized derivations on semi prime rings, Bull. Korean Math. Soc. 48 (2011) 1253-1259. doi: 10.4134/BKMS.2011.48.6.1253.
  • [10] B. Dhara, Remarks on generalized derivations in prime and semiprime rings, Internat. J. Math. & Math. Sc. 2010 (Article ID 646587) 6 pages.
  • [11] T.S. Erickson, W.S. Martindale III and J.M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975) 49-63. doi: 10.2140/pjm.1975.60.49.
  • [12] C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math. Acad. Sci. Hung. 14 (1963) 369-371. doi: 10.1007/BF01895723.
  • [13] I.N. Herstein, Topics in ring theory (Univ. of Chicago Press, Chicago, 1969).
  • [14] S. Huang and B. Davvaz, Generalized derivations of rings and Banach algebras, Comm. Algebra 41 (2013) 1188-1194. doi: 10.1080/00927872.2011.642043.
  • [15] S. Huang, On generalized derivations of prime and semiprime rings, Taiwanese J. Math. 16 (2012) 771-776.
  • [16] N. Jacobson, Structure of rings (Amer. Math. Soc. Colloq. Pub. 37. Providence, RI: Amer. Math. Soc., 1964).
  • [17] B.E. Johnson and A.M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968) 1067-1073. doi: 10.2307/2373290.
  • [18] V.K. Kharchenko, Differential identity of prime rings, Algebra and Logic 17 (1978) 155-168. doi: 10.1007/BF01670115.
  • [19] B. Kim, On the derivations of semiprime rings and noncommutative Banach algebras, Acta Math. Sinica 16 (2000) 21-28. doi: 10.1007/s101149900020.
  • [20] C. Lanski, An engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993) 731-734. doi: 10.1090/S0002-9939-1993-1132851-9.
  • [21] T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992) 27-38.
  • [22] T.K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999) 4057-4073. doi: 10.1080/00927879908826682.
  • [23] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969) 576-584. doi: 10.1016/0021-8693(69)90029-5.
  • [24] M. Mathieu, Properties of the product of two derivations of a C*-algebra, Canad. Math. Bull. 32 (1989) 490-497. doi: 10.4153/CMB-1989-072-4.
  • [25] M.A. Quadri, M.S. Khan and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. Pure Appl. Math. 34 (2003) 1393-1396.
  • [26] A.M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969) 166-170. doi: 10.1090/S0002-9939-1969-0233207-X.
  • [27] I.M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955) 260-264. doi: 10.1007/BF01362370.
  • [28] M. Thomas, The image of a derivation is contained in the radical, Ann. Math. 128 (1988) 435-460. doi: 10.2307/1971432.
  • [29] J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (1992) 877-884.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmal_1210
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.