ArticleOriginal scientific text

Title

Quotient hyper pseudo BCK-algebras

Authors 1, 2, 3

Affiliations

  1. Departmevnt of Mathemaics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University, Ahvaz, Iran
  2. Departmevnt of Mathemaics, Payame Noor University, Tehran, Iran
  3. Departmevnt of Mathemaics, Shahid Beheshti University, Tehran, Iran

Abstract

In this paper, we first investigate some properties of the hyper pseudo BCK-algebras. Then we define the concepts of strong and reflexive hyper pseudo BCK-ideals and establish some relationships among them and the other types of hyper pseudo BCK-ideals. Also, we introduce the notion of regular congruence relation on hyper pseudo BCK-algebras and investigate some related properties. By using this relation, we construct the quotient hyper pseudo BCK-algebra and give some related results.

Keywords

hyper pseudo BCK-algebra, normal hyper pseudo BCK-ideal, quotient hyper pseudo BCK-algebra

Bibliography

  1. R.A. Borzooei and H. Harizavi, Regular Congruence Relations on Hyper BCK-algebras, Sci. Math. Jap. 61 (2005) 217-231.
  2. R.A. Borzooei, A. Hasankhani, M.M. Zahedi and Y.B. Jun, On hyper K-algebra, Math. Jap. 52 (2000) 113-121.
  3. R.A. Borzooei, A. Rezazadeh and R. Ameri, On hyper pseudo BCK-algebra, Iranian J. Math. Sci. and Inf., to appear.
  4. R.A. Borzooei, M.M. Zahedi and H. Rezaei, Classification of hyper BCK-algebras of order 3, Italian J. Pure Appl. Math. 12 (2002) 175-184.
  5. P. Corsini and V. Leoreanu, Applications of Hyper Structure Theory (Kluwer Academic Publications, 2003). doi: 10.1007/978-1-4757-3714-1.
  6. G. Ggeorgesu and A. Iorulescu, Pseudo BCK-algebra, in: Proceeding of DMTCS 01, Combinatorics and Logic (Ed(s)), (Springer London, 2001) 97-114.
  7. Sh. Ghorbani, A. Hasankhani and E. Eslami, Hyper MV-algebras, Set-Valued Mathematics and Applications 1 (2008) 205-222.
  8. A. Iorgulescu, Classes of Pseudo BCK-algebra-Part I, Journal of Multiple-valued Logic and Soft Computing 12 (2006) 71-130.
  9. A. Iorgulescu, Classes of Pseudo BCK-algebra-Part II, Journal of Multiple-valued Logic and Soft Computing 12 (2006) 575-629.
  10. Y. Imai and K. Iseki, On Axiom System of Prepositional Calculi XIV, Proc. Japan Acad. 42 (1996) 26-29.
  11. Y.B. Jun, M. Kondo and K.H. Kim, Pseudo Ideals of Pseudo BCK-algebras, Sci. Math. Jap. 8 (2003) 87-91.
  12. Y.B. Jun, M.M. Zahedi, X.L. Xin and R.A. Borzooei, On Hyper BCK-algebra, Italian J. Pure and Appl. Math. 10 (2000) 127-136.
  13. F. Marty, Scu une généralization de la notion de groups, in: 8th Congress Math. (Ed(s)), (Scandinavian, Stockholm, 1934) 45-49.
  14. Jie Meng and Young Bae Jun, BCK-algebras (Kyung Moon Sa. Co., 1994).
Pages:
147-165
Main language of publication
English
Received
2013-03-08
Accepted
2013-09-06
Published
2013
Exact and natural sciences