ArticleOriginal scientific text

Title

On pseudo BE-algebras

Authors 1, 2, 3, 3, 4

Affiliations

  1. Department of Mathematics Shahid Beheshti University of Tehran, Tehran, Iran
  2. Department of Mathematics Shahid Bahonar University of Kerman, Kerman, Iran
  3. Department of Mathematics, Payame Noor University P.O. Box. 19395-3697, Tehran, Iran
  4. Department of Mathematics, Tehran University Tehran, Iran

Abstract

In this paper, we introduce the notion of pseudo BE-algebra which is a generalization of BE-algebra. We define the concepts of pseudo subalgebras and pseudo filters and prove that, under some conditions, pseudo subalgebra can be a pseudo filter. We prove that every homomorphic image and pre-image of a pseudo filter is also a pseudo filter. Furthermore, the notion of pseudo upper sets in pseudo BE-algebras introduced and is proved that every pseudo filter is an union of pseudo upper sets.

Keywords

BE-algebra, Pseudo BE-algebra, pseudo filter, pseudo upper set

Bibliography

  1. S.S. Ahn and Y.H. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn. 68 (2) (2008) 279-285.
  2. S.S. Ahn and K.S. So, On generalized upper sets in BE-algebras, Bull. Korean Math. Soc. 46 (2) (2009) 281-287. doi: 10.4134/BKMS.2009.46.2.281
  3. S.S. Ahn, Y.H. Kim and J.M. Ko, Filters in commutative BE-algebras, Bull. Korean Math. Soc. 27 (2) (2012) 233-242. doi: 10.4134/CKMS.2012.27.2.233
  4. A. Borumand Saeid, A. Rezaei and R.A. Borzoei, Some types of filters in BE-algebras, (submitted).
  5. G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras, Information Technology (Bucharest, 1999), 961-968, Inforec, Bucharest.
  6. G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras, in Abstracts of the Fifth International Conference FSTA 2000, Slovakia, February 2000, 90-92.
  7. G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Combinatorics, computability and logic, 97-114, Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 2001.
  8. Y. Imai and K. Iseki, On axiom systems of propositional Calculi, XIV proc. Jpn. Academy 42 (1966) 19-22.
  9. Y.B. Jun, H.S. Kim and J. Neggers, On pseudo-BCI ideals of pesudo-BCI algebras, Math. Bec. 58 (2006) 39-46.
  10. H.S. Kim and Y.H. Kim, On BE-algebras, Sci, Math, Jpn. 66 (1) (2007) 113-117.
  11. Y.H. Kim and K.S. So, On minimality in pseudo-BCI algebras, Commun. Korean Math. Soc. 27 (1) (2012) 7-13. doi: 10.4134/CKMS.2012.27.1.007
  12. B.L. Meng, On filters in BE-algebras, Sci. Math. Jpn. 71 (2010), 201-207.
  13. J. Rachunek, A non commutative generalization of MV-algebras, Czehoslovak Math. J. 52 (127) (2002) 255-273.
  14. A. Rezaei and A. Borumand Saeid, Some results in BE-algebras, Analele Universitatii Oradea Fasc. Matematica, Tom XIX (2012), 33-44.
  15. A. Rezaei and A. Borumand Saeid, Commutative ideals in BE-algebras, Kyungpook Math. J. 52 (2012) 483-494. doi: 10.5666/KMJ.2012.52.4.483
  16. A. Walendziak, On commutative BE-algebras, Sci. Math. Jpn. 69 (2) (2008) 585-588.
  17. A. Walendziak, On axiom systems of pseudo-BCK algebras, Bull. Malays. Math. Sci. Soc. 34 (2) (2011) 287-293.
Pages:
95-108
Main language of publication
English
Received
2013-02-22
Accepted
2013-05-11
Published
2013
Exact and natural sciences