ArticleOriginal scientific text

Title

On ideals of a skew lattice

Authors 1

Affiliations

  1. University of Ljubljana

Abstract

Ideals are one of the main topics of interest when it comes to the study of the order structure of an algebra. Due to their nice properties, ideals have an important role both in lattice theory and semigroup theory. Two natural concepts of ideal can be derived, respectively, from the two concepts of order that arise in the context of skew lattices. The correspondence between the ideals of a skew lattice, derived from the preorder, and the ideals of its respective lattice image is clear. Though, skew ideals, derived from the partial order, seem to be closer to the specific nature of skew lattices. In this paper we review ideals in skew lattices and discuss the intersection of this with the study of the coset structure of a skew lattice.

Keywords

noncommutative lattice, skew lattice, band of semigroups, ideals, coset structure, Green's relations, skew Boolean algebras

Bibliography

  1. A. Bauer and K. Cvetko-Vah, Stone duality for skew Boolean algebras with intersections, Arxiv preprint arXiv:1106.0425, Houston Journal of Mathematics (to appear, 2012).
  2. R. Bignall and J. Leech, Skew Boolean algebras and discriminator varieties, Algebra Universalis 33 (1995) 387-398. doi: 10.1007/BF01190707
  3. G. Birkhoff, Lattice Theory, volume 5, AMS Colloquium Publications (Providence RI, third edition, 1940).
  4. W.H. Cornish, Boolean skew algebras, Acta Mathematica Academiae Scientiarurn Hungarkcae 36 (3-4) (1980) 281-291. doi: 10.1007/BF01898144
  5. K. Cvetko-Vah and J. Pita Costa, On the coset laws for skew lattices, Semigroup Forum 8 (2011) 395-411. doi: 10.1007/s00233-011-9325-7
  6. G. Grätzer, Lattice Theory (San Francisco, WH Freeman and Co, 1971).
  7. J.M. Howie, An Introduction to Semigroup Theory (Academic Press, 1976).
  8. P. Jordan, The mathematical theory of quasiorder, semigroups of idempotents and noncommutative lattices - a new field of modern algebra, Technical report, Armed Services Technical Information Agency (Arlington, Virginia, 1961).
  9. M. Kinyon and J. Leech, Categorical Skew Lattices, arXiv:1201.3033 (2012).
  10. J. Leech, Towards a theory of noncommutative lattices, Semigroup Forum 34 (1986) 117-120. doi: 10.1007/BF02573155
  11. J. Leech, Skew lattices in rings, Algebra Universalis 26 (1989) 48-72. doi: 10.1007/BF01243872
  12. J. Leech, Skew boolean algebras, Algebra Universalis 27 (1990) 497-506. doi: 10.1007/BF01188995
  13. J. Leech, Normal skew lattices, Semigroup Forum 44 (1992) 1-8. doi: 10.1007/BF02574320
  14. J. Leech, The geometric structure of skew lattices, Trans. Amer. Math. Soc. 335 (1993) 823-842. doi: 10.1090/S0002-9947-1993-1080169-X
  15. J. Leech, Recent developments in the theory of skew lattices, Semigroup Forum 52 (1996) 7-24. doi: 10.1007/BF02574077
  16. J. Leech and M. Spinks, Skew Boolean algebras derived from generalized Boolean algebras, Algebra Universalis 58 (2008) 287-302. doi: 10.1007/s00012-008-2069-x
  17. J. Pita Costa, Coset Laws for Categorical Skew Lattices (Algebra Univers., in press, 2011).
  18. J. Pita Costa, On the coset structure of skew lattices, Demonstratio Mathematica 44 (4) (2011) 1-19.
  19. J. Pita Costa, On the Coset Structure of Skew Lattices (PhD thesis, University of Ljubljana, 2012).
  20. B.M. Schein, Pseudosemilattices and pseudolattices, Amer. Math. Soc. Transl. 119 (1983) 1-16.
  21. V. Slavík, On skew lattices I, Comment. Math. Univer. Carolinae 14 (1973) 73-85.
  22. W. Wechler, Universal Algebra for Computer Scientists (Springer-Verlag, Berlin, 1992). doi: 10.1007/978-3-642-76771-5
Pages:
5-21
Main language of publication
English
Received
2011-10-05
Accepted
2012-06-25
Published
2012
Exact and natural sciences