PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2015 | 231 | 1 | 73-81
Tytuł artykułu

The Bohr-Pál theorem and the Sobolev space $W₂^{1/2}$

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The well-known Bohr-Pál theorem asserts that for every continuous real-valued function f on the circle 𝕋 there exists a change of variable, i.e., a homeomorphism h of 𝕋 onto itself, such that the Fourier series of the superposition f ∘ h converges uniformly. Subsequent improvements of this result imply that actually there exists a homeomorphism that brings f into the Sobolev space $W₂^{1/2}(𝕋)$. This refined version of the Bohr-Pál theorem does not extend to complex-valued functions. We show that if α < 1/2, then there exists a complex-valued f that satisfies the Lipschitz condition of order α and at the same time has the property that $f ∘ h ∉ W₂^{1/2}(𝕋)$ for every homeomorphism h of 𝕋.
Słowa kluczowe
Twórcy
  • National Research University Higher School of Economics, 34 Tallinskaya St., Moscow, 123458, Russia
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm8438-1-2016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.