Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 231 | 3 | 269-285

Tytuł artykułu

Egoroff, σ, and convergence properties in some archimedean vector lattices

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
An archimedean vector lattice A might have the following properties:
(1) the sigma property (σ): For each ${aₙ}_{n∈ ℕ} conA⁺$ there are ${λₙ}_{n ∈ ℕ} ⊆ (0,∞)$ and a ∈ A with λₙaₙ ≤ a for each n;
(2) order convergence and relative uniform convergence are equivalent, denoted (OC ⇒ RUC): if aₙ ↓ 0 then aₙ → 0 r.u.
The conjunction of these two is called strongly Egoroff.
We consider vector lattices of the form D(X) (all extended real continuous functions on the compact space X) showing that (σ) and (OC ⇒ RUC) are equivalent, and equivalent to this property of X: (E) the intersection of any sequence of dense cozero-sets contains another. (In case X is zero-dimensional, (E) holds iff the clopen algebra clopX of X is a 'Egoroff Boolean algebra'.)
A crucial part of the proof is this theorem about any compact X: For any countable intersection of dense cozero-sets U, there is uₙ ↓ 0 in C(X) with {x ∈ X: uₙ(x) ↓ 0} = U. Then, we make a construction of many new X with (E) (thus, dually, strongly Egoroff D(X)), which can be F-spaces, connected, or zero-dimensional, depending on the input to the construction. This results in many new Egoroff Boolean algebras which are also weakly countably complete.

Słowa kluczowe

Twórcy

autor
  • Department of Mathematics, Wesleyan University, Middletown, CT 06459, U.S.A.
autor
  • KdV Institute for Mathematics, University of Amsterdam, Science Park 105-107, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm8363-2-2016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.