EN
We study whether the operator space $V** \overset{α}{⊗} W**$ can be identified with a subspace of the bidual space $(V \overset{α}{⊗} W)**$, for a given operator space tensor norm. We prove that this can be done if α is finitely generated and V and W are locally reflexive. If in addition the dual spaces are locally reflexive and the bidual spaces have the completely bounded approximation property, then the identification is through a complete isomorphism. When α is the projective, Haagerup or injective norm, the hypotheses can be weakened.